代码拉取完成,页面将自动刷新
同步操作将从 vegee/ESPCN_Learning 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
# -*- coding: UTF-8 -*-
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
class Net(nn.Module):
def __init__(self, upscale_factor):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2))
self.conv2 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1))
self.conv3 = nn.Conv2d(32, 1 * (upscale_factor ** 2), (3, 3), (1, 1), (1, 1))
self.pixel_shuffle = nn.PixelShuffle(upscale_factor)
def forward(self, x):
x = torch.tanh(self.conv1(x))
x = torch.tanh(self.conv2(x))
x = torch.sigmoid(self.pixel_shuffle(self.conv3(x)))
return x
if __name__ == "__main__":
model = Net(upscale_factor=3)
print(model)
# 用此处代码测试时要改模型,网络的input_channel = 3
oritensor = torch.randn(1, 3, 33, 33)
oritensor = torch.clamp(oritensor, 0, 1)
newtensor = torch.clamp(model(oritensor), 0, 1)
orinumpy = oritensor.detach().squeeze().permute(1, 2, 0).numpy()
newnumpy = newtensor.detach().squeeze().permute(1, 2, 0).numpy()
plt.imshow(orinumpy)
plt.title('original noise')
plt.show()
plt.imshow(newnumpy)
plt.title('reconstruct noise')
plt.show()
print(orinumpy.shape)
print(newnumpy.shape)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。