当前仓库属于暂停状态,部分功能使用受限,详情请查阅 仓库状态说明
1 Star 0 Fork 90

SunpcInuse/Argus
暂停

forked from 风酒/Argus
暂停
 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
test.py 8.16 KB
一键复制 编辑 原始数据 按行查看 历史
风酒 提交于 2019-09-17 16:30 . repair plot font bug
# coding: utf-8
from __future__ import division, print_function
import argparse
import cv2
import time
import pickle
import numpy as np
import pandas as pd
import tensorflow as tf
import setting.yolo_args as pred_args
import setting.facenet_args as facenet_args
from utils.utils import gpu_nms, plot_one_box, letterbox_resize
from net.yolo_model import yolov3
from net.facenet_model import FaceNet
def build_yolo():
"""
构建yolo v3网络
:return:
"""
with tf.Graph().as_default():
sess = tf.Session()
input_data = tf.placeholder(
tf.float32, [1, pred_args.new_size[1], pred_args.new_size[0], 3], name='input_data'
)
with tf.variable_scope('yolov3'):
yolo_model = yolov3(pred_args.num_class, pred_args.anchors)
pred_feature_maps = yolo_model.forward(input_data, False)
pred_boxes, pred_confs, pred_probs = yolo_model.predict(pred_feature_maps)
pred_scores = pred_confs * pred_probs
boxes, scores, labels = gpu_nms(
pred_boxes, pred_scores, pred_args.num_class,
max_boxes=200, score_thresh=0.3, nms_thresh=0.45)
saver = tf.train.Saver()
saver.restore(sess, pred_args.weight_path)
return sess, input_data, boxes, scores, labels
def build_facenet():
"""
构建facenet网络
:return:
"""
facenet = FaceNet()
return facenet
def face_distinguish(facenet, img_ori, boxes_):
"""
简单使用距离辨别人脸
:param facenet:
:param img_ori:
:param boxes_:
:return:
"""
sub_img = []
for i in range(len(boxes_)):
x0, y0, x1, y1 = boxes_[i]
cropped = img_ori[int(y0):int(y1), int(x0):int(x1)] # 裁剪图片
cropped = cv2.resize(cropped, (160, 160))
sub_img.append(cropped)
img_arr = np.stack(tuple(sub_img))
vectors = facenet.img_to_vetor(img_arr) # 得到所有的128维向量
base_face_vec = pd.read_csv(facenet_args.base_face_csv, index_col=0)
dis_dic = {}
for i in range(len(vectors)):
names = base_face_vec.pop('name')
dis = np.sqrt(np.square(np.subtract(vectors[i], base_face_vec.values)))
idx = np.argmin(np.sum(dis, axis=1))
dis_dic[i] = names[idx]
return dis_dic
def face_svm_distinguish(facenet, img_ori, boxes_):
"""
使用svm辨别人脸
:param facenet:
:param img_ori:
:param boxes_:
:return:
"""
# 加载svm
with open(facenet_args.svm_path, 'rb') as in_file:
(clf, scale_fit) = pickle.load(in_file)
sub_img = []
for i in range(len(boxes_)):
x0, y0, x1, y1 = boxes_[i]
cropped = img_ori[int(y0):int(y1), int(x0):int(x1)] # 裁剪图片
cropped = cv2.resize(cropped, (160, 160))
sub_img.append(cropped)
img_arr = np.stack(tuple(sub_img))
vectors = facenet.img_to_vetor(img_arr) # 得到所有的128维向量
# 标准化
vectors = scale_fit.transform(vectors)
labels = clf.predict(vectors)
print("person labels", labels)
name_labels = [facenet_args.person_list[i] for i in labels]
return name_labels, labels
def img_detect(input_args):
"""
人脸辨别
:param input_args:
:return:
"""
sess, input_data, boxes, scores, labels = build_yolo()
facenet = build_facenet()
img_ori = cv2.imread(input_args.input_image) # opencv 载入
if pred_args.use_letterbox_resize:
img, resize_ratio, dw, dh = letterbox_resize(img_ori, pred_args.new_size[0], pred_args.new_size[1])
else:
height_ori, width_ori = img_ori.shape[:2]
img = cv2.resize(img_ori, tuple(pred_args.new_size))
# img 转RGB, 转float, 归一化
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = np.asarray(img, np.float32)
img = img[np.newaxis, :] / 255.
boxes_, scores_, labels_ = sess.run([boxes, scores, labels], feed_dict={input_data: img})
# 还原坐标到原图
if pred_args.use_letterbox_resize:
boxes_[:, [0, 2]] = (boxes_[:, [0, 2]] - dw) / resize_ratio
boxes_[:, [1, 3]] = (boxes_[:, [1, 3]] - dh) / resize_ratio
else:
boxes_[:, [0, 2]] *= (width_ori / float(pred_args.new_size[0]))
boxes_[:, [1, 3]] *= (height_ori / float(pred_args.new_size[1]))
print('box coords:', boxes_, '\n' + '*' * 30)
print('scores:', scores_, '\n' + '*' * 30)
print('labels:', labels_)
labels, labels_idx = face_svm_distinguish(facenet, img_ori, boxes_)
# 遍历每一个bbox
for i in range(len(boxes_)):
x0, y0, x1, y1 = boxes_[i]
if labels is not '':
img_ori = plot_one_box(
img_ori, [x0, y0, x1, y1],
label=labels[i],
color=facenet_args.color_table[labels_idx[i]]
)
cv2.imwrite(pred_args.output_image, img_ori)
cv2.imshow('Detection result', img_ori)
cv2.waitKey(0)
sess.close()
def video_detect(input_args):
sess, input_data, boxes, scores, labels = build_yolo()
facenet = build_facenet()
vid = cv2.VideoCapture(input_args.input_video)
video_frame_cnt = int(vid.get(7))
video_width = int(vid.get(3))
video_height = int(vid.get(4))
video_fps = int(vid.get(5))
fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
video_writer = cv2.VideoWriter(pred_args.output_video, fourcc, video_fps, (video_width, video_height))
for i in range(video_frame_cnt):
ret, img_ori = vid.read()
if pred_args.use_letterbox_resize:
img, resize_ratio, dw, dh = letterbox_resize(img_ori, pred_args.new_size[0], pred_args.new_size[1])
else:
height_ori, width_ori = img_ori.shape[:2]
img = cv2.resize(img_ori, tuple(pred_args.new_size))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = np.asarray(img, np.float32)
img = img[np.newaxis, :] / 255.
start_time = time.time()
boxes_, scores_, labels_ = sess.run([boxes, scores, labels], feed_dict={input_data: img})
# 还原坐标到原图
if pred_args.use_letterbox_resize:
boxes_[:, [0, 2]] = (boxes_[:, [0, 2]] - dw) / resize_ratio
boxes_[:, [1, 3]] = (boxes_[:, [1, 3]] - dh) / resize_ratio
else:
boxes_[:, [0, 2]] *= (width_ori / float(pred_args.new_size[0]))
boxes_[:, [1, 3]] *= (height_ori / float(pred_args.new_size[1]))
print('box coords:', boxes_, '\n' + '*' * 30)
print('scores:', scores_, '\n' + '*' * 30)
print('labels:', labels_)
labels, labels_idx = face_svm_distinguish(facenet, img_ori, boxes_)
end_time = time.time()
# 遍历每一个bbox
for j in range(len(boxes_)):
x0, y0, x1, y1 = boxes_[j]
if labels is not '':
img_ori = plot_one_box(
img_ori, [x0, y0, x1, y1],
label=labels[j],
color=facenet_args.color_table[labels_idx[j]]
)
cv2.putText(
img_ori, '{:.2f}ms'.format((end_time - start_time) * 1000),
(40, 40), 0, fontScale=1, color=(0, 255, 0), thickness=2
)
cv2.imshow('Detection result', img_ori)
video_writer.write(img_ori)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
vid.release()
video_writer.release()
def main():
parser = argparse.ArgumentParser(description='YOLO V3 检测文件')
parser.add_argument('--detect_object', default=pred_args.detect_object, type=str, help='检测目标-img或video')
parser.add_argument('--input_image', default=pred_args.input_image, type=str, help='图片路径')
parser.add_argument('--input_video', default=pred_args.input_video, type=str, help='视频路径')
input_args = parser.parse_args()
# 图片检测
if input_args.detect_object == 'img':
img_origin = cv2.imread(input_args.input_image) # 原始图片
if img_origin is None:
raise Exception('未找到图片文件!')
img_detect(input_args)
# 视频检测
elif input_args.detect_object == 'video':
vid = cv2.VideoCapture(input_args.input_video)
if vid is None:
raise Exception('未找到视频文件!')
video_detect(input_args)
if __name__ == '__main__':
main()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/ssppcc/Argus.git
git@gitee.com:ssppcc/Argus.git
ssppcc
Argus
Argus
master

搜索帮助