1 Star 0 Fork 0

spartanbin/ vehicle_trajectory_prediction

Create your Gitee Account
Explore and code with more than 12 million developers,Free private repositories !:)
Sign up
This repository doesn't specify license. Please pay attention to the specific project description and its upstream code dependency when using it.
Clone or Download
model2.py 15.57 KB
Copy Edit Raw Blame History
spartanbin authored 2022-02-17 17:50 . first commit
import torch
from torch import nn
from utils import outputActivation
class transformer_encoder(nn.Module):
def __init__(
self,
input_size,
d_model,
nhead,
num_encoder_layers,
num_decoder_layers,
dim_feedforward,
hidden_size,
):
super(transformer_encoder, self).__init__()
self.leaky_relu = nn.LeakyReLU(0.1)
self.input_linear = nn.Linear(input_size, d_model)
self.transformer = nn.Transformer(
d_model=d_model,
nhead=nhead,
num_encoder_layers=num_encoder_layers,
num_decoder_layers=num_decoder_layers,
dim_feedforward=dim_feedforward,
)
self.output_linear = nn.Linear(d_model, hidden_size)
self.d_model = d_model
def forward(self, src: torch.Tensor):
_, bacth_size, _ = src.shape
src = self.leaky_relu(self.input_linear(src))
tgt = torch.zeros((1, bacth_size, self.d_model)).float().to(src.device)
output = self.transformer(src, tgt)
output = self.leaky_relu(self.output_linear(output))
return output
class transformer_decoder(nn.Module):
def __init__(
self,
input_size,
d_model,
nhead,
num_encoder_layers,
num_decoder_layers,
dim_feedforward,
hidden_size,
):
super(transformer_decoder, self).__init__()
self.leaky_relu = nn.LeakyReLU(0.1)
self.input_linear = nn.Linear(input_size, d_model)
self.transformer = nn.Transformer(
d_model=d_model,
nhead=nhead,
num_encoder_layers=num_encoder_layers,
num_decoder_layers=num_decoder_layers,
dim_feedforward=dim_feedforward,
)
self.output_linear = nn.Linear(d_model, hidden_size)
self.d_model = d_model
def forward(self, tgt: torch.Tensor):
_, bacth_size, _ = tgt.shape
tgt = self.leaky_relu(self.input_linear(tgt))
src = torch.zeros((1, bacth_size, self.d_model)).float().to(tgt.device)
output = self.transformer(src, tgt)
output = self.leaky_relu(self.output_linear(output))
return output
class PAM_Module(nn.Module):
""" Position attention module"""
def __init__(self, in_dim):
super(PAM_Module, self).__init__()
self.chanel_in = in_dim
self.query_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim // 8, kernel_size=1)
self.key_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim // 8, kernel_size=1)
self.value_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1)
self.gamma = nn.Parameter(torch.zeros(1))
self.softmax = nn.Softmax(dim=-1)
def forward(self, x):
"""
inputs :
x : input feature maps ( B X C X H X W)
returns :
out : attention value + input feature
attention: B X (HxW) X (HxW)
"""
m_batchsize, C, height, width = x.size()
proj_query = self.query_conv(x).view(m_batchsize, -1, width*height).permute(0, 2, 1)
proj_key = self.key_conv(x).view(m_batchsize, -1, width*height)
energy = torch.bmm(proj_query, proj_key)
attention = self.softmax(energy)
proj_value = self.value_conv(x).view(m_batchsize, -1, width*height)
out = torch.bmm(proj_value, attention.permute(0, 2, 1))
out = out.view(m_batchsize, C, height, width)
out = self.gamma * out + x
return out
class CAM_Module(nn.Module):
""" Channel attention module"""
def __init__(self, in_dim):
super(CAM_Module, self).__init__()
self.chanel_in = in_dim
self.gamma = nn.Parameter(torch.zeros(1))
self.softmax = nn.Softmax(dim=-1)
def forward(self, x):
"""
inputs :
x : input feature maps ( B X C X H X W)
returns :
out : attention value + input feature
attention: B X C X C
"""
m_batchsize, C, height, width = x.size()
proj_query = x.view(m_batchsize, C, -1)
proj_key = x.view(m_batchsize, C, -1).permute(0, 2, 1)
energy = torch.bmm(proj_query, proj_key)
energy_new = torch.max(energy, -1, keepdim=True)[0].expand_as(energy)-energy
attention = self.softmax(energy_new)
proj_value = x.view(m_batchsize, C, -1)
out = torch.bmm(attention, proj_value)
out = out.view(m_batchsize, C, height, width)
out = self.gamma * out + x
return out
class Dual_Attention_Network(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, padding):
super(Dual_Attention_Network, self).__init__()
self.act = nn.ReLU()
self.pam_input_conv = nn.Conv2d(in_channels=in_channels, out_channels=64, kernel_size=3, padding=1)
self.cam_input_conv = nn.Conv2d(in_channels=in_channels, out_channels=64, kernel_size=3, padding=1)
self.pam = PAM_Module(in_dim=64)
self.cam = CAM_Module(in_dim=64)
self.output_conv = nn.Conv2d(in_channels=128, out_channels=out_channels, kernel_size=kernel_size, padding=padding)
def forward(self, feature_maps: torch.Tensor):
pam_input = self.act(self.pam_input_conv(feature_maps))
cam_input = self.act(self.cam_input_conv(feature_maps))
pam_output = self.pam(pam_input)
cam_output = self.cam(cam_input)
output = torch.cat((pam_output, cam_output), dim=1)
output = self.output_conv(output)
return output
class newNet2(nn.Module):
def __init__(self, args):
super(newNet2, self).__init__()
self.args = args
self.use_cuda = args.use_cuda
# Flag for output:
# -- Train-mode : Concatenate with true maneuver label.
# -- Test-mode : Concatenate with the predicted maneuver with the maximal probability.
self.train_output_flag = args.train_output_flag
self.use_planning = args.use_planning
self.use_fusion = args.use_fusion
# IO Setting
self.grid_size = args.grid_size
self.in_length = args.in_length
self.out_length = args.out_length
self.num_lat_classes = args.num_lat_classes
self.num_lon_classes = args.num_lon_classes
## Sizes of network layers
self.temporal_embedding_size = args.temporal_embedding_size
self.encoder_size = args.encoder_size
self.decoder_size = args.decoder_size
self.soc_conv_depth = args.soc_conv_depth
self.soc_conv2_depth = args.soc_conv2_depth
self.dynamics_encoding_size = args.dynamics_encoding_size
self.social_context_size = args.social_context_size
self.targ_enc_size = self.social_context_size + self.dynamics_encoding_size
self.fuse_enc_size = args.fuse_enc_size
self.fuse_conv1_size = 2 * self.fuse_enc_size
self.fuse_conv2_size = 4 * self.fuse_enc_size
# Activations:
self.leaky_relu = nn.LeakyReLU(0.1)
self.relu = nn.ReLU()
self.softmax = nn.Softmax(dim=1)
## Define network parameters
''' Convert traj to temporal embedding'''
self.temporalConv = nn.Conv1d(in_channels=2, out_channels=self.temporal_embedding_size, kernel_size=3, padding=1)
''' Encode the input temporal embedding '''
self.nbh_transformer = transformer_encoder(
input_size=self.temporal_embedding_size,
d_model=32,
nhead=2,
num_encoder_layers=1,
num_decoder_layers=1,
dim_feedforward=64,
hidden_size=self.encoder_size,
)
if self.use_planning:
self.plan_transformer = transformer_encoder(
input_size=self.temporal_embedding_size,
d_model=32,
nhead=2,
num_encoder_layers=1,
num_decoder_layers=1,
dim_feedforward=64,
hidden_size=self.encoder_size,
)
''' Encoded dynamic to dynamics_encoding_size'''
self.dyn_emb = nn.Linear(self.encoder_size, self.dynamics_encoding_size)
''' Convolutional Social Pooling on the planned vehicle and all nbrs vehicles '''
self.nbrs_conv_social = nn.Sequential(
Dual_Attention_Network(self.encoder_size, self.soc_conv_depth, 3, 0),
self.leaky_relu,
nn.MaxPool2d((3, 3), stride=2),
Dual_Attention_Network(self.soc_conv_depth, self.soc_conv2_depth, (3, 1), 0),
self.leaky_relu
)
if self.use_planning:
self.plan_conv_social = nn.Sequential(
Dual_Attention_Network(self.encoder_size, self.soc_conv_depth, 3, 0),
self.leaky_relu,
nn.MaxPool2d((3, 3), stride=2),
Dual_Attention_Network(self.soc_conv_depth, self.soc_conv2_depth, (3, 1), 0),
self.leaky_relu
)
self.pool_after_merge = nn.MaxPool2d((2, 2), padding=(1, 0))
else:
self.pool_after_merge = nn.MaxPool2d((2, 1), padding=(1, 0))
''' Target Fusion Module'''
if self.use_fusion:
''' Fused Structure'''
self.fcn_conv1 = nn.Conv2d(self.targ_enc_size, self.fuse_conv1_size, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2d(self.fuse_conv1_size)
self.fcn_pool1 = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)
self.fcn_conv2 = nn.Conv2d(self.fuse_conv1_size, self.fuse_conv2_size, kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm2d(self.fuse_conv2_size)
self.fcn_pool2 = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)
self.fcn_convTrans1 = nn.ConvTranspose2d(self.fuse_conv2_size, self.fuse_conv1_size, kernel_size=3, stride=2, padding=1)
self.back_bn1 = nn.BatchNorm2d(self.fuse_conv1_size)
self.fcn_convTrans2 = nn.ConvTranspose2d(self.fuse_conv1_size, self.fuse_enc_size, kernel_size=3, stride=2, padding=1)
self.back_bn2 = nn.BatchNorm2d(self.fuse_enc_size)
else:
self.fuse_enc_size = 0
''' Decoder '''
self.op_lat = nn.Linear(self.targ_enc_size + self.fuse_enc_size,
self.num_lat_classes) # output lateral maneuver.
self.op_lon = nn.Linear(self.targ_enc_size + self.fuse_enc_size,
self.num_lon_classes) # output longitudinal maneuver.
self.dec_transformer = transformer_decoder(
input_size=self.targ_enc_size + self.fuse_enc_size + self.num_lat_classes + self.num_lon_classes,
d_model=32,
nhead=2,
num_encoder_layers=1,
num_decoder_layers=1,
dim_feedforward=64,
hidden_size=self.decoder_size,
)
''' Output layers '''
self.op = nn.Linear(self.decoder_size, 5)
def forward(self, nbsHist, nbsMask, planFut, planMask, targsHist, targsEncMask, lat_enc, lon_enc):
''' Forward target vehicle's dynamic'''
dyn_enc = self.leaky_relu(self.temporalConv(targsHist.permute(1,2,0)))
dyn_enc = self.nbh_transformer(dyn_enc.permute(2, 0, 1))
dyn_enc = self.leaky_relu( self.dyn_emb(dyn_enc.view(dyn_enc.shape[1],dyn_enc.shape[2])) )
''' Forward neighbour vehicles'''
nbrs_enc = self.leaky_relu(self.temporalConv(nbsHist.permute(1, 2, 0)))
nbrs_enc = self.nbh_transformer(nbrs_enc.permute(2, 0, 1))
nbrs_enc = nbrs_enc.view(nbrs_enc.shape[1], nbrs_enc.shape[2])
''' Masked neighbour vehicles'''
nbrs_grid = torch.zeros_like(nbsMask).float()
nbrs_grid = nbrs_grid.masked_scatter_(nbsMask, nbrs_enc)
nbrs_grid = nbrs_grid.permute(0,3,2,1)
nbrs_grid = self.nbrs_conv_social(nbrs_grid)
if self.use_planning:
''' Forward planned vehicle'''
plan_enc = self.leaky_relu(self.temporalConv(planFut.permute(1, 2, 0)))
plan_enc = self.plan_transformer(plan_enc.permute(2, 0, 1))
plan_enc = plan_enc.view(plan_enc.shape[1], plan_enc.shape[2])
''' Masked planned vehicle'''
plan_grid = torch.zeros_like(planMask).float()
plan_grid = plan_grid.masked_scatter_(planMask, plan_enc)
plan_grid = plan_grid.permute(0, 3, 2, 1)
plan_grid = self.plan_conv_social(plan_grid)
''' Merge neighbour and planned vehicle'''
merge_grid = torch.cat((nbrs_grid, plan_grid), dim=3)
merge_grid = self.pool_after_merge(merge_grid)
else:
merge_grid = self.pool_after_merge(nbrs_grid)
social_context = merge_grid.view(-1, self.social_context_size)
'''Concatenate social_context (neighbors + ego's planing) and dyn_enc, then place into the targsEncMask '''
target_enc = torch.cat((social_context, dyn_enc),1)
target_grid = torch.zeros_like(targsEncMask).float()
target_grid = target_grid.masked_scatter_(targsEncMask, target_enc)
if self.use_fusion:
'''Fully Convolutional network to get a grid to be fused'''
fuse_conv1 = self.relu(self.fcn_conv1(target_grid.permute(0, 3, 2, 1)))
fuse_conv1 = self.bn1(fuse_conv1)
fuse_conv1 = self.fcn_pool1(fuse_conv1)
fuse_conv2 = self.relu(self.fcn_conv2(fuse_conv1))
fuse_conv2 = self.bn2(fuse_conv2)
fuse_conv2 = self.fcn_pool2(fuse_conv2)
# Encoder / Decoder #
fuse_trans1 = self.relu(self.fcn_convTrans1(fuse_conv2))
fuse_trans1 = self.back_bn1(fuse_trans1+fuse_conv1)
fuse_trans2 = self.relu(self.fcn_convTrans2(fuse_trans1))
fuse_trans2 = self.back_bn2(fuse_trans2)
# Extract the location with targets
fuse_grid_mask = targsEncMask[:,:,:,0:self.fuse_enc_size]
fuse_grid = torch.zeros_like(fuse_grid_mask).float()
fuse_grid = fuse_grid.masked_scatter_(fuse_grid_mask, fuse_trans2.permute(0, 3, 2, 1))
'''Finally, Integrate everything together'''
enc_rows_mark = targsEncMask[:,:,:,0].view(-1)
enc_rows = [i for i in range(len(enc_rows_mark)) if enc_rows_mark[i]]
enc = torch.cat([target_grid, fuse_grid], dim=3)
enc = enc.view(-1, self.fuse_enc_size+self.targ_enc_size)
enc = enc[enc_rows, :]
else:
enc = target_enc
'''Maneuver recognition'''
lat_pred = self.softmax(self.op_lat(enc))
lon_pred = self.softmax(self.op_lon(enc))
if self.train_output_flag:
enc = torch.cat((enc, lat_enc, lon_enc), 1)
fut_pred = self.decode(enc)
return fut_pred, lat_pred, lon_pred
else:
fut_pred = []
for k in range(self.num_lon_classes):
for l in range(self.num_lat_classes):
lat_enc_tmp = torch.zeros_like(lat_enc)
lon_enc_tmp = torch.zeros_like(lon_enc)
lat_enc_tmp[:, l] = 1
lon_enc_tmp[:, k] = 1
# Concatenate maneuver label before feeding to decoder
enc_tmp = torch.cat((enc, lat_enc_tmp, lon_enc_tmp), 1)
fut_pred.append(self.decode(enc_tmp))
return fut_pred, lat_pred, lon_pred
def decode(self,enc):
enc = enc.repeat(self.out_length, 1, 1)
h_dec = self.dec_transformer(enc)
h_dec = h_dec.permute(1, 0, 2)
fut_pred = self.op(h_dec)
fut_pred = fut_pred.permute(1, 0, 2)
fut_pred = outputActivation(fut_pred)
return fut_pred
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/spartanbin/vehicle_trajectory_prediction.git
git@gitee.com:spartanbin/vehicle_trajectory_prediction.git
spartanbin
vehicle_trajectory_prediction
vehicle_trajectory_prediction
main

Search