1 Star 0 Fork 43

songyanyi/beauty

forked from 夜半饿得慌/beauty 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
predict_shap_local.py 9.67 KB
一键复制 编辑 原始数据 按行查看 历史
夜半饿得慌 提交于 2019-09-04 09:59 . add report.
# %% coding=utf-8
import sys
import shap
import dlib
import dill
import warnings
import numpy as np
import pandas as pd
from sklearn.externals import joblib
from gen_report import gen_report
from shap.common import convert_to_link, Instance, Model, Data, DenseData, Link
"""
预测解释 shap
"""
#%%
predictor_path = "model/shape_predictor_68_face_landmarks.dat"
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(predictor_path)
model = joblib.load('model/beauty.pkl')
#explainer = joblib.load('model/explainer.pkl')
with open('model/explainer.pkl', 'rb') as f:
explainer = dill.load(f)
df_input = pd.read_csv('data/face/df_input.csv', dtype=np.float64)
df_label = df_input['label'].values
df_input = df_input.drop(['Unnamed: 0', 'Image', 'label'], axis=1)
feature_names = df_input.columns
df_input = df_input.values
#print(feature_names)
df_explain = pd.read_csv('model/explain.csv')
df_explain['key'] = df_explain['key'].astype(str)
#%%
def prepare_input(img_path):
img = dlib.load_rgb_image(img_path)
dets = detector(img, 1)
df_image = None
for k, d in enumerate(dets):
# print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format(k, d.left(), d.top(), d.right(), d.bottom()))
f_width = abs(d.right() - d.left())
f_height = abs(d.bottom() - d.top())
# print('width:' + str(f_width) + ', height:' + str(f_height))
# Get the landmarks/parts for the face in box d.
shape = predictor(img, d)
# print("Part 0: {}, Part 1: {} ...".format(shape.part(0), shape.part(1)))
face_shape = {}
for i in range(0, 67):
for j in range(i + 1, 68):
face_shape[str(i) + '_' + str(j) + '_x'] = abs(shape.part(i).x - shape.part(j).x) / f_width
face_shape[str(i) + '_' + str(j) + '_y'] = abs(shape.part(i).y - shape.part(j).y) / f_height
# print(str(i) + '_' + str(j))
# shape_size.append(face_shape)
df_image = pd.DataFrame.from_dict([face_shape])
break
return df_image
class Explanation:
def __init__(self):
pass
class AdditiveExplanation(Explanation):
def __init__(self, base_value, out_value, effects, effects_var, instance, link, model, data):
self.base_value = base_value
self.out_value = out_value
self.effects = effects
self.effects_var = effects_var
assert isinstance(instance, Instance)
self.instance = instance
assert isinstance(link, Link)
self.link = link
assert isinstance(model, Model)
self.model = model
assert isinstance(data, Data)
self.data = data
def ensure_not_numpy(x):
if isinstance(x, bytes):
return x.decode()
elif isinstance(x, np.str):
return str(x)
elif isinstance(x, np.generic):
return float(x.item())
else:
return x
def force_df(base_value, shap_values, features=None, feature_names=None, out_names=None, link="identity",
plot_cmap="RdBu", matplotlib=False, show=True, figsize=(20, 3), ordering_keys=None,
ordering_keys_time_format=None,
text_rotation=0):
# auto unwrap the base_value
if type(base_value) == np.ndarray and len(base_value) == 1:
base_value = base_value[0]
if (type(base_value) == np.ndarray or type(base_value) == list):
if type(shap_values) != list or len(shap_values) != len(base_value):
raise Exception("In v0.20 force_plot now requires the base value as the first parameter! " \
"Try shap.force_plot(explainer.expected_value, shap_values) or " \
"for multi-output models try " \
"shap.force_plot(explainer.expected_value[0], shap_values[0]).")
assert not type(shap_values) == list, "The shap_values arg looks looks multi output, try shap_values[i]."
link = convert_to_link(link)
if type(shap_values) != np.ndarray:
return shap_values
# convert from a DataFrame or other types
if str(type(features)) == "<class 'pandas.core.frame.DataFrame'>":
if feature_names is None:
feature_names = list(features.columns)
features = features.values
elif str(type(features)) == "<class 'pandas.core.series.Series'>":
if feature_names is None:
feature_names = list(features.index)
features = features.values
elif isinstance(features, list):
if feature_names is None:
feature_names = features
features = None
elif features is not None and len(features.shape) == 1 and feature_names is None:
feature_names = features
features = None
if len(shap_values.shape) == 1:
shap_values = np.reshape(shap_values, (1, len(shap_values)))
if out_names is None:
out_names = ["output value"]
elif type(out_names) == str:
out_names = [out_names]
if shap_values.shape[0] == 1:
if feature_names is None:
feature_names = [shap.labels['FEATURE'] % str(i) for i in range(shap_values.shape[1])]
if features is None:
features = ["" for _ in range(len(feature_names))]
if type(features) == np.ndarray:
features = features.flatten()
# check that the shape of the shap_values and features match
if len(features) != shap_values.shape[1]:
msg = "Length of features is not equal to the length of shap_values!"
if len(features) == shap_values.shape[1] - 1:
msg += " You might be using an old format shap_values array with the base value " \
"as the last column. In this case just pass the array without the last column."
raise Exception(msg)
instance = Instance(np.zeros((1, len(feature_names))), features)
exps = AdditiveExplanation(
base_value,
np.sum(shap_values[0, :]) + base_value,
shap_values[0, :],
None,
instance,
link,
Model(None, out_names),
DenseData(np.zeros((1, len(feature_names))), list(feature_names))
)
else:
if matplotlib:
raise Exception("matplotlib = True is not yet supported for force plots with multiple samples!")
if shap_values.shape[0] > 3000:
warnings.warn("shap.force_plot is slow for many thousands of rows, try subsampling your data.")
exps = []
for i in range(shap_values.shape[0]):
if feature_names is None:
feature_names = [shap.labels['FEATURE'] % str(i) for i in range(shap_values.shape[1])]
if features is None:
display_features = ["" for i in range(len(feature_names))]
else:
display_features = features[i, :]
instance = Instance(np.ones((1, len(feature_names))), display_features)
e = AdditiveExplanation(
base_value,
np.sum(shap_values[i, :]) + base_value,
shap_values[i, :],
None,
instance,
link,
Model(None, out_names),
DenseData(np.ones((1, len(feature_names))), list(feature_names))
)
exps.append(e)
result_df = pd.DataFrame({'feature': exps.data.group_names, 'effect': ensure_not_numpy(exps.effects), 'value': exps.instance.group_display_values})
result_df = result_df[result_df['effect'] != 0].reset_index()
return result_df
def get_explain(x):
global df_explain
points = x.split('_')
exp = ''
for p in points:
if p != 'x' and p != 'y':
try:
exp += df_explain[df_explain['key'] == p]['explain'].values[0]
except:
exp += ''
exp += '_'
if p == 'x':
exp += '宽'
elif p == 'y':
exp += '高'
return exp
def gen_report(im_path):
X_test = prepare_input(im_path)
Y_test = model.predict(X_test)
params = []
print('beauty score:' + str(Y_test))
params.append(Y_test)
shap_values = explainer.shap_values(X_test)
print('gen explain')
result = force_df(explainer.expected_value, shap_values[0, :], X_test)
result['explain'] = result['feature'].apply(get_explain)
try:
good_effect = result[result['effect'] > 0.01].sort_values('effect', ascending=False).reset_index()
except:
good_effect = None
try:
bad_effect = result[result['effect'] < 0.01].sort_values('effect').reset_index()
except:
bad_effect = None
if good_effect is not None:
good_str = str(good_effect[0:10,'explain'].values)
params.append(good_str)
print('您的优势部位:' + good_str)
if bad_effect is not None:
bad_str = str(bad_effect[0:10, 'explain'].values)
params.append(bad_str)
print('您的欠缺部位:' + bad_str)
gen_report('t1', params)
if __name__ == "__main__":
try:
test = sys.argv[1]
mode = sys.argv[2]
except:
test = "img/t1.jpg"
mode = 'shap'
# result = model.predict(df_input)
X_test = prepare_input(test)
y_test = model.predict(X_test)
print('beauty score:' + str(y_test))
shap_values = explainer.shap_values(X_test)
print('gen explain')
result = force_df(explainer.expected_value, shap_values[0, :], X_test)
result['explain'] = result['feature'].apply(get_explain)
good_effect = result[result['effect'] > 0.01].sort_values('effect', ascending=False).reset_index()
bad_effect = result[result['effect'] < 0.01].sort_values('effect').reset_index()
print('您的优势部位:' + str(good_effect[0:10,'explain'].values))
print('您的欠缺部位:' + str(bad_effect[0:10,'explain'].values))
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/songyanyi/beauty.git
git@gitee.com:songyanyi/beauty.git
songyanyi
beauty
beauty
master

搜索帮助