# deep_sort_yolov3 **Repository Path**: small_and_fragrant/deep_sort_yolov3 ## Basic Information - **Project Name**: deep_sort_yolov3 - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-11-05 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Introduction https://github.com/nwojke/deep_sort https://github.com/qqwweee/keras-yolo3 # Quick Start 1. Download YOLOv3 weights from [YOLO website](http://pjreddie.com/darknet/yolo/). 2. Convert the Darknet YOLO model to a Keras model. 3. Run YOLO_DEEP_SORT ``` wget https://pjreddie.com/media/files/yolov3.weights python convert.py yolov3.cfg yolov3.weights model_data/yolo.h5 python demo.py ``` # Dependencies The code is compatible with Python 2.7 and 3. The following dependencies are needed to run the tracker: NumPy sklean OpenCV Additionally, feature generation requires TensorFlow-1.4.0. # Note file model_data/mars-small128.pb had convert to tensorflow-1.4.0 file model_data/yolo.h5 is to large to upload ,so you need convert it from Darknet Yolo model to a keras model by yourself yolo.h5 model can download from https://drive.google.com/file/d/1uvXFacPnrSMw6ldWTyLLjGLETlEsUvcE/view?usp=sharing , use tensorflow1.4.0 # Test use : 'video_capture = cv2.VideoCapture('path to video')' use a video file or 'video_capture = cv2.VideoCapture(0)' use camera speed : when only run yolo detection about 11-13 fps , after add deep_sort about 11.5 fps test video : https://www.bilibili.com/video/av23500163/ From the issue https://github.com/Qidian213/deep_sort_yolov3/issues/7 , it can tracks cars, birds and trucks too and performs well .