1 Star 0 Fork 64

silcer/Ncnn_FaceTrack

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
LandmarkTracking.h 8.13 KB
一键复制 编辑 原始数据 按行查看 历史
新无止竞 提交于 2019-11-13 22:30 . update demo
#ifndef ZEUSEESFACETRACKING_H
#define ZEUSEESFACETRACKING_H
#include <opencv2/opencv.hpp>
#include "mtcnn.h"
#include "time.h"
cv::Rect boundingRect(const std::vector<cv::Point>& pts) {
if (pts.size() > 1)
{
int xmin = pts[0].x;
int ymin = pts[0].y;
int xmax = pts[0].x;
int ymax = pts[0].y;
for (int i = 1; i < pts.size(); i++)
{
if (pts[i].x < xmin)
xmin = pts[i].x;
if (pts[i].y < ymin)
ymin = pts[i].y;
if (pts[i].x > xmax)
xmax = pts[i].x;
if (pts[i].y > ymax)
ymax = pts[i].y;
}
return cv::Rect(xmin, ymin, xmax - xmin, ymax - ymin);
}
}
//typedef int T;
//T i = 1;
class Face {
public:
Face(int instance_id, cv::Rect rect) {
face_id = instance_id;
loc = rect;
isCanShow = false; //追踪一次后待框稳定后即可显示
}
Face() {
isCanShow = false; //追踪一次后待框稳定后即可显示
}
Bbox faceBbox;
cv::Rect loc;
int face_id = -1;
long frameId = 0;
int ptr_num = 0;
bool isCanShow;
cv::Mat frame_face_prev;
static cv::Rect SquarePadding(cv::Rect facebox, int margin_rows, int margin_cols, bool max_b)
{
int c_x = facebox.x + facebox.width / 2;
int c_y = facebox.y + facebox.height / 2;
int large = 0;
if (max_b)
large = max(facebox.height, facebox.width) / 2;
else
large = min(facebox.height, facebox.width) / 2;
cv::Rect rectNot(c_x - large, c_y - large, c_x + large, c_y + large);
rectNot.x = max(0, rectNot.x);
rectNot.y = max(0, rectNot.y);
rectNot.height = min(rectNot.height, margin_rows - 1);
rectNot.width = min(rectNot.width, margin_cols - 1);
if (rectNot.height - rectNot.y != rectNot.width - rectNot.x)
return SquarePadding(cv::Rect(rectNot.x, rectNot.y, rectNot.width - rectNot.x, rectNot.height - rectNot.y), margin_rows, margin_cols, false);
return cv::Rect(rectNot.x, rectNot.y, rectNot.width - rectNot.x, rectNot.height - rectNot.y);
}
static cv::Rect SquarePadding(cv::Rect facebox, int padding)
{
int c_x = facebox.x - padding;
int c_y = facebox.y - padding;
return cv::Rect(facebox.x - padding, facebox.y - padding, facebox.width + padding * 2, facebox.height + padding * 2);;
}
static double getDistance(cv::Point x, cv::Point y)
{
return sqrt((x.x - y.x) * (x.x - y.x) + (x.y - y.y) * (x.y - y.y));
}
std::vector<std::vector<cv::Point> > faceSequence;
std::vector<std::vector<float>> attitudeSequence;
};
class FaceTracking {
public:
FaceTracking(std::string modelPath)
{
this->detector = new MTCNN(modelPath);
faceMinSize = 70;
this->detector->SetMinFace(faceMinSize);
detection_Time = -1;
}
~FaceTracking() {
delete this->detector;
}
void detecting(cv::Mat* image) {
ncnn::Mat ncnn_img = ncnn::Mat::from_pixels(image->data, ncnn::Mat::PIXEL_BGR2RGB, image->cols, image->rows);
std::vector<Bbox> finalBbox;
if(isMaxFace)
detector->detectMaxFace(ncnn_img, finalBbox);
else
detector->detect(ncnn_img, finalBbox);
const int num_box = finalBbox.size();
std::vector<cv::Rect> bbox;
bbox.resize(num_box);
candidateFaces_lock = 1;
for (int i = 0; i < num_box; i++) {
bbox[i] = cv::Rect(finalBbox[i].x1, finalBbox[i].y1, finalBbox[i].x2 - finalBbox[i].x1 + 1,
finalBbox[i].y2 - finalBbox[i].y1 + 1);
bbox[i] = Face::SquarePadding(bbox[i], image->rows, image->cols, true);
std::shared_ptr<Face> face(new Face(trackingID, bbox[i]));
(*image)(bbox[i]).copyTo(face->frame_face_prev);
trackingID = trackingID + 1;
candidateFaces.push_back(*face);
}
candidateFaces_lock = 0;
}
void Init(cv::Mat& image) {
ImageHighDP = image.clone();
trackingID = 0;
detection_Interval = 200; //detect faces every 200 ms
detecting(&image);
stabilization = false;
}
void doingLandmark_onet(cv::Mat& face, Bbox& faceBbox, int zeroadd_x, int zeroadd_y, int stable_state = 0) {
ncnn::Mat in = ncnn::Mat::from_pixels_resize(face.data, ncnn::Mat::PIXEL_BGR, face.cols, face.rows, 48, 48);
faceBbox = detector->onet(in, zeroadd_x, zeroadd_y, face.cols, face.rows);
}
void tracking_corrfilter(const cv::Mat& frame, const cv::Mat& model, cv::Rect& trackBox, float scale)
{
trackBox.x /= scale;
trackBox.y /= scale;
trackBox.height /= scale;
trackBox.width /= scale;
int zeroadd_x = 0;
int zeroadd_y = 0;
cv::Mat frame_;
cv::Mat model_;
cv::resize(frame, frame_, cv::Size(), 1 / scale, 1 / scale);
cv::resize(model, model_, cv::Size(), 1 / scale, 1 / scale);
cv::Mat gray;
cvtColor(frame_, gray, cv::COLOR_RGB2GRAY);
cv::Mat gray_model;
cvtColor(model_, gray_model, cv::COLOR_RGB2GRAY);
cv::Rect searchWindow;
searchWindow.width = trackBox.width * 3;
searchWindow.height = trackBox.height * 3;
searchWindow.x = trackBox.x + trackBox.width * 0.5 - searchWindow.width * 0.5;
searchWindow.y = trackBox.y + trackBox.height * 0.5 - searchWindow.height * 0.5;
searchWindow &= cv::Rect(0, 0, frame_.cols, frame_.rows);
cv::Mat similarity;
matchTemplate(gray(searchWindow), gray_model, similarity, cv::TM_CCOEFF_NORMED);
double mag_r;
cv::Point point;
minMaxLoc(similarity, 0, &mag_r, 0, &point);
trackBox.x = point.x + searchWindow.x;
trackBox.y = point.y + searchWindow.y;
trackBox.x *= scale;
trackBox.y *= scale;
trackBox.height *= scale;
trackBox.width *= scale;
}
bool tracking(cv::Mat& image, Face& face)
{
cv::Rect faceROI = face.loc;
cv::Mat faceROI_Image;
tracking_corrfilter(image, face.frame_face_prev, faceROI, tpm_scale);
image(faceROI).copyTo(faceROI_Image);
doingLandmark_onet(faceROI_Image, face.faceBbox, faceROI.x, faceROI.y, face.frameId > 1);
//ncnn::Mat rnet_data = ncnn::Mat::from_pixels_resize(faceROI_Image.data, ncnn::Mat::PIXEL_BGR2RGB, faceROI_Image.cols, faceROI_Image.rows, 24, 24);
//float sim = detector->rnet(rnet_data);
float sim = face.faceBbox.score;
if (sim > 0.1) {
//stablize
//float diff_x = 0;
//float diff_y = 0;
cv::Rect bdbox;
bdbox.x = face.faceBbox.x1;
bdbox.y = face.faceBbox.y1;
bdbox.width = face.faceBbox.x2 - face.faceBbox.x1;
bdbox.height = face.faceBbox.y2 - face.faceBbox.y1;
bdbox = Face::SquarePadding(bdbox, static_cast<int>(bdbox.height * -0.05));
bdbox = Face::SquarePadding(bdbox, image.rows, image.cols, 1);
face.faceBbox.x1 = bdbox.x;
face.faceBbox.y1 = bdbox.y;
face.faceBbox.x2 = bdbox.x + bdbox.width;
face.faceBbox.y2 = bdbox.y + bdbox.height;
face.loc = bdbox;
image(bdbox).copyTo(face.frame_face_prev);
face.frameId += 1;
face.isCanShow = true;
return true;
}
return false;
}
void setMask(cv::Mat& image, cv::Rect& rect_mask)
{
int height = image.rows;
int width = image.cols;
cv::Mat subImage = image(rect_mask);
subImage.setTo(0);
}
void update(cv::Mat& image)
{
ImageHighDP = image.clone();
//std::cout << trackingFace.size() << std::endl;
if (candidateFaces.size() > 0 && !candidateFaces_lock)
{
for (int i = 0; i < candidateFaces.size(); i++)
{
trackingFace.push_back(candidateFaces[i]);
}
candidateFaces.clear();
}
for (std::vector<Face>::iterator iter = trackingFace.begin(); iter != trackingFace.end();)
{
if (!tracking(image, *iter))
{
iter = trackingFace.erase(iter); //追踪失败 则删除此人脸
}
else {
iter++;
}
}
if (detection_Time < 0)
{
detection_Time = (double)cv::getTickCount();
}
else {
double diff = (double)(cv::getTickCount() - detection_Time) * 1000 / cv::getTickFrequency();
if (diff > detection_Interval)
{
//set Mask to protect the tracking face not to be detected.
for (auto& face : trackingFace)
{
setMask(ImageHighDP, face.loc);
}
detection_Time = (double)cv::getTickCount();
// do detection in thread
detecting(&ImageHighDP);
}
}
}
std::vector<Face> trackingFace; //跟踪中的人脸
private:
//int isLostDetection;
//int isTracking;
//int isDetection;
cv::Mat ImageHighDP;
//cv::Mat ImageLowDP;
//int downSimpilingFactor;
int faceMinSize;
MTCNN* detector;
std::vector<Face> candidateFaces; // 将检测到的人脸放入此列队 待跟踪的人脸
bool candidateFaces_lock;
double detection_Time;
double detection_Interval;
int trackingID;
bool stabilization;
int tpm_scale = 2;
bool isMaxFace = true;
};
#endif //ZEUSEESFACETRACKING_H
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
C++
1
https://gitee.com/silcer/Ncnn_FaceTrack.git
git@gitee.com:silcer/Ncnn_FaceTrack.git
silcer
Ncnn_FaceTrack
Ncnn_FaceTrack
master

搜索帮助