# GCN-LPA **Repository Path**: shzgamelife/GCN-LPA ## Basic Information - **Project Name**: GCN-LPA - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-07-22 - **Last Updated**: 2022-02-09 ## Categories & Tags **Categories**: Uncategorized **Tags**: 知识图谱 ## README # GCN-LPA This repository is the implementation of GCN-LPA ([arXiv](https://arxiv.org/abs/2002.06755)): > Unifying Graph Convolutional Neural Networks and Label Propagation > Hongwei Wang, Jure Leskovec > arXiv Preprint, 2020 GCN-LPA is an end-to-end model that unifies Graph Convolutional Neural Networks (GCN) and Label Propagation Algorithm (LPA) for adaptive semi-supervised node classification. ### Files in the folder - `data/` - `citeseer/` - `cora/` - `pubmed/` - `ms_academic_cs.npz` (Coauthor-CS) - `ms_academic_phy.npz` (Coauthor-Phy) - `src/`: implementation of GCN-LPA. ### Running the code ``` $ python main.py ``` **Note**: The default dataset is Citeseer. Hyper-parameter settings for other datasets are provided in ``main.py``. ### Required packages The code has been tested running under Python 3.6.5, with the following packages installed (along with their dependencies): - tensorflow == 1.12.0 - networkx == 2.1 - numpy == 1.14.3 - scipy == 1.1.0 - sklearn == 0.19.1 - matplotlib == 2.2.2