# AdaIN-pytorch **Repository Path**: shzgamelife/AdaIN-pytorch ## Basic Information - **Project Name**: AdaIN-pytorch - **Description**: No description available - **Primary Language**: Unknown - **License**: GPL-3.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-01-20 - **Last Updated**: 2022-01-20 ## Categories & Tags **Categories**: Uncategorized **Tags**: 计算机视觉 ## README # AdaIN-pytorch PyTorch implementation of "Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization" by Xun Huang, Serge Belongie. [arxiv](https://arxiv.org/abs/1703.06868). ## 0. References - [irasin/Pytorch_AdaIN](https://github.com/irasin/Pytorch_AdaIN/) ## 1. Set up and train model ### 1.1 install requirements `pip install -r requitements.txt` ### 1.2 get the datasets and unzip them to desired location - COCO: https://cocodataset.org/#download - WikiArt: https://www.kaggle.com/c/painter-by-numbers/data ### 1.3 Train model - to start training: `python main.py train path/to/coco path/to/wikiart [OPTIONS]` - to change training parameters and options: `python main.py train --help` ## 2. Style Transfer using pre-trained model - to run inference: `python main.py infer [OPTIONS]` - info on supported options: `python main.py infer --help` ## 3. Some Results - All images were resized to 1024x1024 for inference. The 1024x1024 outputs are interpolated to the original size using bilinear interpolation. | Content Img | Style Img | Output | |----------|:-------------:|------:| | | | | | | | | | | | |