1 Star 0 Fork 261

shibin572/股票分析

forked from wking/股票分析 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
CeLue模板.py 11.14 KB
一键复制 编辑 原始数据 按行查看 历史
"""
此为策略模板文件。你自己写策略后,一定要保存为celue.py
celue.py文件不直接执行,通过xuangu.py或celue_save.py调用
个人实际策略不分享。
MA函数返回的是值。
其余函数输入、输出都是序列。只有序列才能表现出来和通达信一样的判断逻辑。
HHV/LLV/COUNT使用了rolling函数,性能极差,慎用。
"""
import numpy as np
import talib
import time
import func
from func_TDX import rolling_window, REF, MA, SMA, HHV, LLV, COUNT, EXIST, CROSS, BARSLAST
from rich import print
def 策略HS300(df_hs300, start_date='', end_date=''):
"""
HS300信号的作用是,当信号是0时,当日不买股票,1时买入。传出
:param start_date:
:param end_date:
:return: 布尔序列
"""
if start_date == '':
start_date = df_hs300.index[0] # 设置为df第一个日期
if end_date == '':
end_date = df_hs300.index[-1] # 设置为df最后一个日期
df_hs300 = df_hs300.loc[start_date:end_date]
HS300_CLOSE = df_hs300['close']
HS300_当日涨幅 = (HS300_CLOSE / REF(HS300_CLOSE, 1) - 1) * 100
HS300_信号 = ~(HS300_当日涨幅 < -1.5) & ~(HS300_当日涨幅 > 1.5)
return HS300_信号
def 策略1(df, start_date='', end_date='', mode=None):
"""
:param DataFrame df:输入具体一个股票的DataFrame数据表。时间列为索引。
:param mode :str 'fast'为快速模式,只处理当日数据,用于开盘快速筛选股票。和策略2结合使用时不能用fast模式
:param date start_date:可选。留空从头开始。2020-10-10格式,策略指定从某日期开始
:param date end_date:可选。留空到末尾。2020-10-10格式,策略指定到某日期结束
:return : 布尔序列
"""
if start_date == '':
start_date = df.index[0] # 设置为df第一个日期
if end_date == '':
end_date = df.index[-1] # 设置为df最后一个日期
df = df.loc[start_date:end_date]
O = df['open']
H = df['high']
L = df['low']
C = df['close']
if {'换手率'}.issubset(df.columns): # 无换手率列的股票,只可能是近几个月的新股。
换手率 = df['换手率']
else:
换手率 = 0
if mode == 'fast':
# 天数不足500天,收盘价小于9直接返回FALSE
# TJ01
# now_date = pd.to_datetime(time.strftime("%Y-%m-%d", time.localtime()))
# if df.at[df.index[-1], 'date'] < now_date:
# print(f"{df.at[df.index[-1], 'code']} 无今日数据 跳过")
# return False
# del now_date
if C.shape[0] < 500 or C.iat[-1] < 9:
return False
金额万均 = MA(df['amount'] / 10000, 30)
流通市值亿 = df['流通市值'] / 100000000
MA5 = MA(C, 5)
# TJ04
# {排除当日涨停的股票}
if df['code'][0][0:2] == "68" or df['code'][0][0:2] == "30":
TJ04_1 = 1.2
else:
TJ04_1 = 1.1
TJ04_2 = ~((C+0.01) >= np.ceil((np.floor(REF(C, 1)*1000*TJ04_1)-4)/10)/100)
TJ04 = TJ04_2.iat[-1]
result = TJ04
else:
金额万均 = SMA(df['amount'] / 10000, 30)
流通市值亿 = df['流通市值'] / 100000000
MA5 = SMA(C, 5)
# TJ01
TJ01 = (BARSLAST(C == 0) > 500) & (df['close'] > 9)
# TJ04
if df['code'][0][0:2] == "68" or df['code'][0][0:2] == "30":
TJ04_1 = 1.2
else:
TJ04_1 = 1.1
TJ04_2 = ~((C+0.01) >= np.ceil((np.floor(REF(C, 1)*1000*TJ04_1)-4)/10)/100)
TJ04 = TJ04_2
result = TJ01 & TJ04
return result
def 策略2(df, HS300_信号, start_date='', end_date=''):
"""
:param DataFrame df:输入具体一个股票的DataFrame数据表。时间列为索引。
:param date start_date:可选。留空从头开始。2020-10-10格式,策略指定从某日期开始
:param date end_date:可选。留空到末尾。2020-10-10格式,策略指定到某日期结束
:return bool: 截止日期这天,策略是否触发。true触发,false不触发
"""
if start_date == '':
start_date = df.index[0] # 设置为df第一个日期
if end_date == '':
end_date = df.index[-1] # 设置为df最后一个日期
df = df.loc[start_date:end_date]
if df.shape[0] < 251: # 小于250日 直接返回flase序列
return pd.Series(index=df.index, dtype=bool)
# 根据df的索引重建HS300信号,为了与股票交易日期一致
HS300_信号 = pd.Series(HS300_信号, index=df.index, dtype=bool).dropna()
O = df['open']
H = df['high']
L = df['low']
C = df['close']
换手率 = df['换手率']
# 变量定义
MA5 = SMA(C, 5)
MA10 = SMA(C, 10)
MA20 = SMA(C, 20)
MA60 = SMA(C, 60)
MA120 = SMA(C, 120)
MA250 = SMA(C, 250)
流通市值亿 = df['流通市值'] / 100000000
# 判断部分
# 每个TJ0?返回的都是bool序列
# TJ01
TJ01 = (MA120 > -5) & (MA10 < 60) & (MA60 < 10) & (-7 < MA250) & (MA250 < 10)
# TJ02
TJ02 = (C > SMA(C, 60)) & (C < SMA(C, 60) * 1.1) & (C > O)
# TJ06
# {20日/200日涨幅小于50%,且收盘价到上穿MA60日的涨幅 除以上穿MA60日到30日收盘最低价 的比 小于1.5倍 }
TJ06_1 = LLV(C, 200)
TJ06_2 = LLV(C, 20)
TJ06_MA60_DAY = BARSLAST((REF(C, 5) < MA60) & CROSS(C, MA60))
# TJ06_MA60 = REF(MA60, TJ06_MA60_DAY)
# TJ06_MA60特殊,只能单独写出来
TJ06_MA60 = pd.Series(index=TJ06_MA60_DAY.index, dtype=float) # 新建序列,传递索引
i = 0
for k, v in TJ06_MA60_DAY.iteritems():
if i - v > 0:
TJ06_MA60.iat[i] = MA60.iat[i - v]
i = i + 1
df = pd.concat([df, TJ06_MA60_DAY.rename('TJ06_MA60_DAY')], axis=1)
df.insert(df.shape[1], 'TJ06_MA60_LLV', np.NaN)
for index_date in df.loc[df['TJ06_MA60_DAY'] == 0].index.to_list():
index_int = df.index.get_loc(index_date)
df.at[index_date, 'TJ06_MA60_LLV'] = df.iloc[index_int - 20:index_int]['close'].min()
df = df.fillna(method='ffill') # 向下填充无效值
TJ06_MA60_LLV = df['TJ06_MA60_LLV']
TJ06_3 = TJ06_MA60 / TJ06_MA60_LLV
TJ06_4 = C / TJ06_MA60
TJ06 = (TJ06_2 / TJ06_1 - 1 < 0.5) & (1 < TJ06_3 / TJ06_4) & (TJ06_3 / TJ06_4 < 1.5)
# TJ11
TJP1 = 策略1(df, start_date, end_date)
TJ11_1 = HS300_信号 & TJP1 & TJ01 & TJ02 & TJ06
TJ11_2 = COUNT(TJ11_1, 10)
TJ11 = TJ11_1 & (REF(TJ11_2, 1) == 0)
# TJ99
TJ99 = TJ11
# {输出部分}
BUYSIGN = TJ99
return BUYSIGN
def 卖策略(df, 策略2, start_date='', end_date=''):
"""
:param df: 个股Dataframe
:param 策略2: 买入策略2
:param start_date:
:param end_date:
:return: 卖出策略序列
"""
if True not in 策略2.to_list(): # 买入策略2 没有买入点
return pd.Series(index=策略2.index, dtype=bool)
if start_date == '':
start_date = df.index[0] # 设置为df第一个日期
if end_date == '':
end_date = df.index[-1] # 设置为df最后一个日期
df = df.loc[start_date:end_date]
O = df['open']
H = df['high']
L = df['low']
C = df['close']
流通市值亿 = df['流通市值'] / 100000000
# 变量定义
MA10 = SMA(C, 10)
MA60 = SMA(C, 60)
BUY_TODAY = BARSLAST(策略2)
BUY_PRICE_CLOSE = pd.Series(index=C.index, dtype=float)
BUY_PRICE_OPEN = pd.Series(index=C.index, dtype=float)
BUY_PCT = pd.Series(index=C.index, dtype=float)
BUY_PCT_MAX = pd.Series(index=C.index, dtype=float)
# C序列选择BUY_TODAY==0(当日为买入日)的索引的值列表,再倒序循环
for i in BUY_TODAY[BUY_TODAY == 0].index.to_list()[::-1]:
BUY_PRICE_CLOSE.loc[i] = C.loc[i]
BUY_PRICE_OPEN.loc[i] = O.loc[i]
BUY_PRICE_CLOSE.fillna(method='ffill', inplace=True) # 向下填充无效值
BUY_PRICE_OPEN.fillna(method='ffill', inplace=True) # 向下填充无效值
BUY_PCT = C / BUY_PRICE_CLOSE - 1
# 循环计算BUY_PCT_MAX
for k, v in BUY_PCT[i:].items():
if np.isnan(BUY_PCT_MAX[k]):
BUY_PCT_MAX[k] = BUY_PCT[i:k].max()
# SELL01
# {买入后,跌破MA60且跌破买入日的开盘价}
SELL01 = (C < MA60) & (C < BUY_PRICE_OPEN)
# SELL02
# {最高点小于前低点,表示有向下跳空缺口}
SELL02 = (BUY_PCT < 0.1) & (H < REF(L, 1))
# SELL03
# {买入N天后,涨幅大于0%,小于3%(N=流通市值亿),当日收盘卖出}
SELL03_1 = pd.Series(index=C.index, dtype=float)
SELL03_1 = 流通市值亿.apply(lambda x: 7 if x < 100 else 14)
SELL03 = (BUY_TODAY > SELL03_1) & (0.01 < C / BUY_PCT) & (C / BUY_PCT < 0.03)
# SELLSIGN
SELLSIGN01 = SELL01 | SELL02 | SELL03
SELLSIGN = pd.Series(index=C.index, dtype=bool)
# 循环,第一次出现SELLSIGN01=True时,SELLSIGN[k] = True并结束循环。可以获得和通达信公式AUTOFILTER相同效果
for i in BUY_TODAY[BUY_TODAY == 0].index.to_list()[::-1]:
for k, v in SELLSIGN01[i:].items():
# k != i 排除买入信号当日同时产生卖出信号的极端情况
if k != i and SELLSIGN01[k]:
SELLSIGN[k] = True
break
return SELLSIGN
if __name__ == '__main__':
# 调试用代码. 此文件不直接执行。通过xuangu.py或celue_save.py调用
import pandas as pd
import os
import user_config as ucfg
stock_code = '000887'
start_date = ''
end_date = ''
df_stock = pd.read_csv(ucfg.tdx['csv_lday'] + os.sep + stock_code + '.csv',
index_col=None, encoding='gbk', dtype={'code': str})
df_stock['date'] = pd.to_datetime(df_stock['date'], format='%Y-%m-%d') # 转为时间格式
df_stock.set_index('date', drop=False, inplace=True) # 时间为索引。方便与另外复权的DF表对齐合并
df_hs300 = pd.read_csv(ucfg.tdx['csv_index'] + '/000300.csv', index_col=None, encoding='gbk', dtype={'code': str})
df_hs300['date'] = pd.to_datetime(df_hs300['date'], format='%Y-%m-%d') # 转为时间格式
df_hs300.set_index('date', drop=False, inplace=True) # 时间为索引。方便与另外复权的DF表对齐合并
if '09:00:00' < time.strftime("%H:%M:%S", time.localtime()) < '16:00:00':
df_today = func.get_tdx_lastestquote((1, '000300'))
df_hs300 = func.update_stockquote('000300', df_hs300, df_today)
HS300_信号 = 策略HS300(df_hs300)
if not HS300_信号.iat[-1]:
print('今日HS300不满足买入条件,停止选股')
if '09:00:00' < time.strftime("%H:%M:%S", time.localtime()) < '16:00:00':
df_today = func.get_tdx_lastestquote(stock_code)
df_stock = func.update_stockquote(stock_code, df_stock, df_today)
celue1_fast = 策略1(df_stock, mode='fast', start_date=start_date, end_date=end_date)
celue1 = 策略1(df_stock, mode='', start_date=start_date, end_date=end_date)
celue2 = 策略2(df_stock, HS300_信号, start_date=start_date, end_date=end_date)
celue_sell = 卖策略(df_stock, celue2, start_date=start_date, end_date=end_date)
print(f'{stock_code} celue1_fast={celue1_fast} celue1={celue1.iat[-1]} celue2={celue2.iat[-1]} celue_sell={celue_sell.iat[-1]}')
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/shibin572/stock-analysis.git
git@gitee.com:shibin572/stock-analysis.git
shibin572
stock-analysis
股票分析
master

搜索帮助