1 Star 0 Fork 0

shensanbai/time_series_experiment

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
main.py 3.92 KB
一键复制 编辑 原始数据 按行查看 历史
shenqin 提交于 2023-12-03 18:45 . finish datalaoder,then add TODO list
import pandas as pd
import argparse
import numpy as np
import torch
import os
import datetime
import time
from matplotlib import pyplot as plt
from data.datautils import Dataset_ETT_hour,batch_x_ffts
from utils.util import EarlyStopping,_logger
from torch.utils.data import DataLoader
from model.encoder import Time_Frequence_Mul
from model.decoder import linear_Decoder,Attention_Decoder
from trainer import Trainer
from Config import Configs
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_path',default="d:\\data\\etth",type = str,help="数据的根路径")
parser.add_argument('--data_name',default='ETTh1.csv',type = str, help="数据集名字")
parser.add_argument('--save_path',default='./resModel',type=str,help="模型存储的地方")
parser.add_argument('--experiment_description',default='pretrain',type= str,help='帮助记住这是干啥的')
parser.add_argument('--modelname',default='linear_5_100_50.pth',type=str,help=' name of saved model.')
parser.add_argument('--seed',default=3678,type = int,help="random seed")
parser.add_argument('--lamubda',default=1,type=int,help='regulational size. ')
parser.add_argument('--patience',default=30,type=int,help='early stopping.')
parser.add_argument('--logs_save_dir', default='../experiments_logs', type=str,help='saving directory')
parser.add_argument('--epoches',default=400,type=int,help='the epoches of learning. ')
parser.add_argument('--training_mode', default='pre_train', type=str, help='pre_train, training')
parser.add_argument('--run_description', default='run1', type=str,help='Experiment Description')
parser.add_argument('--size',default=[96,24,24],help='size for learning , training, testing')
# parser.add_argument('--device',default=0,type=int,help ='training device ,cpu or gpu. ')
args = parser.parse_args()
configs = Configs()
#
SEED = args.seed
experiment_log_dir = os.path.join("chec",args.logs_save_dir,args.experiment_description, args.training_mode + f"_seed_{SEED}")
log_file_name = os.path.join(experiment_log_dir, f"logs_{datetime.datetime.now().strftime('%d_%m_%Y_%H_%M_%S')}.log")
logger = _logger(log_file_name)
logger.debug(f'Data_name: {args.data_name}')
logger.debug(f'Mode: {args.training_mode}')
logger.debug("Data loaded ...")
# 设置相关的随机数种子
torch.manual_seed(SEED)
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
np.random.seed(SEED)
# 准备数据
Data = Dataset_ETT_hour
train_data_set = Data(args.data_path ,flag = 'train', size = configs.SIZE)
test_data_set = Data(args.data_path ,flag = 'test', size = configs.SIZE)
valid_data_set = Data(args.data_path,flag = 'val', size = configs.SIZE)
train_dl = DataLoader(train_data_set,batch_size = configs.BATCH_SIZE,shuffle = configs.SHUFFLE_FLAG,drop_last = configs.DROP_LAST)
test_dl = DataLoader(test_data_set,batch_size = configs.BATCH_SIZE,shuffle = configs.SHUFFLE_FLAG,drop_last = configs.DROP_LAST)
valid_dl = DataLoader(valid_data_set,batch_size = configs.BATCH_SIZE,shuffle = configs.SHUFFLE_FLAG,drop_last = configs.DROP_LAST)
#earlyStopping:
early_stopping = EarlyStopping(patience=3, verbose=True)
# Load Model
model = Time_Frequence_Mul(configs.INPUT_DIMS,configs.OUTPUT_DIMS,configs.HIDDEN_DIMS,configs.lr,configs.BATCH_SIZE,configs.DEVICE,configs.VARS,configs).to(configs.DEVICE)
optimizer = torch.optim.Adam(model.parameters(),lr = configs.lr,weight_decay=3e-4)
decoder = linear_Decoder(configs.SEQ_LEN,configs.LABEL_LEN + configs.PRED_LEN,configs.HIDDEN_DIMS,configs.lr,configs.BATCH_SIZE,configs.DEVICE,configs.VARS).to(configs.DEVICE)
time_now = time.time()
Trainer(model,optimizer,train_dl,test_dl,valid_dl,configs,args.training_mode,logger,decoder,experiment_log_dir)
logger.debug(f"Training time is : {datetime.datetime.now()-time_now}")
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/shensanbai/time_series_experiment.git
git@gitee.com:shensanbai/time_series_experiment.git
shensanbai
time_series_experiment
time_series_experiment
master

搜索帮助