1 Star 0 Fork 1

YuliQ/document-QA-robot

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
main.py 1.50 KB
一键复制 编辑 原始数据 按行查看 历史
ArkShin 提交于 2023-08-09 05:44 . Replace main.py
from sentence_transformers import SentenceTransformer as ST
import json
from query import input_query
from sBERT import multi_ans
from ErnieBot_turbo import ErnieBot
from GPT_turbo import GPT
def llm_model(name):
if name=='ErnieBot':
return ErnieBot
elif name=='gpt':
return GPT
with open(".\config.json", "r", encoding="utf-8") as f:
config = json.load(f)
with open(".\dataset.json", "r", encoding="utf-8") as f:
dataset = json.load(f)
model_embed = ST(config['model_embed'])
model_llm = llm_model(config['model_llm'])
embed_path, data_path = config['embedding_path'], config['data_path']
language = config['language']
while(True):
json_path, query = input_query(embed_path, language, model_llm)
#如果要比较和数据集答案的相似度,使用以下代码;否则将这部分注释
#query=dataset['Equestion30']
#json_path=".\\embedding\\E.json"
#answer=dataset['answer30']
#answer_embeddings=model_embed.encode([answer])
#print("问题:",query)
#如果要比较和数据集答案的相似度,使用以上代码;否则将这部分注释
##############################################
with open(json_path,'r',encoding="utf-8") as f:
dict = json.load(f)
file_name, sentence_embedding, url= [], [], []
for i in dict:
url.append(dict[i][0])
file_name.append(i)
sentence_embedding.append(dict[i][1])
multi_ans(query, url, file_name, sentence_embedding, model_embed, model_llm, data_path, language)
break
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/qiuyuli/document-qa-robot.git
git@gitee.com:qiuyuli/document-qa-robot.git
qiuyuli
document-qa-robot
document-QA-robot
main

搜索帮助