代码拉取完成,页面将自动刷新
同步操作将从 Gitee 极速下载/DB-GPT 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
import functools
import os
import platform
import re
import shutil
import subprocess
import urllib.request
from enum import Enum
from typing import Callable, List, Optional, Tuple
from urllib.parse import quote, urlparse
import setuptools
from setuptools import find_packages
with open("README.md", mode="r", encoding="utf-8") as fh:
long_description = fh.read()
IS_DEV_MODE = os.getenv("IS_DEV_MODE", "true").lower() == "true"
# If you modify the version, please modify the version in the following files:
# dbgpt/_version.py
DB_GPT_VERSION = os.getenv("DB_GPT_VERSION", "0.4.7")
BUILD_NO_CACHE = os.getenv("BUILD_NO_CACHE", "true").lower() == "true"
LLAMA_CPP_GPU_ACCELERATION = (
os.getenv("LLAMA_CPP_GPU_ACCELERATION", "true").lower() == "true"
)
BUILD_FROM_SOURCE = os.getenv("BUILD_FROM_SOURCE", "false").lower() == "true"
BUILD_FROM_SOURCE_URL_FAST_CHAT = os.getenv(
"BUILD_FROM_SOURCE_URL_FAST_CHAT", "git+https://github.com/lm-sys/FastChat.git"
)
BUILD_VERSION_OPENAI = os.getenv("BUILD_VERSION_OPENAI")
def parse_requirements(file_name: str) -> List[str]:
with open(file_name) as f:
return [
require.strip()
for require in f
if require.strip() and not require.startswith("#")
]
def get_latest_version(package_name: str, index_url: str, default_version: str):
python_command = shutil.which("python")
if not python_command:
python_command = shutil.which("python3")
if not python_command:
print("Python command not found.")
return default_version
command = [
python_command,
"-m",
"pip",
"index",
"versions",
package_name,
"--index-url",
index_url,
]
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
if result.returncode != 0:
print("Error executing command.")
print(result.stderr.decode())
return default_version
output = result.stdout.decode()
lines = output.split("\n")
for line in lines:
if "Available versions:" in line:
available_versions = line.split(":")[1].strip()
latest_version = available_versions.split(",")[0].strip()
return latest_version
return default_version
def encode_url(package_url: str) -> str:
parsed_url = urlparse(package_url)
encoded_path = quote(parsed_url.path)
safe_url = parsed_url._replace(path=encoded_path).geturl()
return safe_url, parsed_url.path
def cache_package(package_url: str, package_name: str, is_windows: bool = False):
safe_url, parsed_url = encode_url(package_url)
if BUILD_NO_CACHE:
return safe_url
from pip._internal.utils.appdirs import user_cache_dir
filename = os.path.basename(parsed_url)
cache_dir = os.path.join(user_cache_dir("pip"), "http", "wheels", package_name)
os.makedirs(cache_dir, exist_ok=True)
local_path = os.path.join(cache_dir, filename)
if not os.path.exists(local_path):
temp_path = local_path + ".tmp"
if os.path.exists(temp_path):
os.remove(temp_path)
try:
print(f"Download {safe_url} to {local_path}")
urllib.request.urlretrieve(safe_url, temp_path)
shutil.move(temp_path, local_path)
finally:
if os.path.exists(temp_path):
os.remove(temp_path)
return f"file:///{local_path}" if is_windows else f"file://{local_path}"
class SetupSpec:
def __init__(self) -> None:
self.extras: dict = {}
self.install_requires: List[str] = []
setup_spec = SetupSpec()
class AVXType(Enum):
BASIC = "basic"
AVX = "AVX"
AVX2 = "AVX2"
AVX512 = "AVX512"
@staticmethod
def of_type(avx: str):
for item in AVXType:
if item._value_ == avx:
return item
return None
class OSType(Enum):
WINDOWS = "win"
LINUX = "linux"
DARWIN = "darwin"
OTHER = "other"
@functools.cache
def get_cpu_avx_support() -> Tuple[OSType, AVXType]:
system = platform.system()
os_type = OSType.OTHER
cpu_avx = AVXType.BASIC
env_cpu_avx = AVXType.of_type(os.getenv("DBGPT_LLAMA_CPP_AVX"))
if "windows" in system.lower():
os_type = OSType.WINDOWS
output = "avx2"
print("Current platform is windows, use avx2 as default cpu architecture")
elif system == "Linux":
os_type = OSType.LINUX
result = subprocess.run(
["lscpu"], stdout=subprocess.PIPE, stderr=subprocess.PIPE
)
output = result.stdout.decode()
elif system == "Darwin":
os_type = OSType.DARWIN
result = subprocess.run(
["sysctl", "-a"], stdout=subprocess.PIPE, stderr=subprocess.PIPE
)
output = result.stdout.decode()
else:
os_type = OSType.OTHER
print("Unsupported OS to get cpu avx, use default")
return os_type, env_cpu_avx if env_cpu_avx else cpu_avx
if "avx512" in output.lower():
cpu_avx = AVXType.AVX512
elif "avx2" in output.lower():
cpu_avx = AVXType.AVX2
elif "avx " in output.lower():
# cpu_avx = AVXType.AVX
pass
return os_type, env_cpu_avx if env_cpu_avx else cpu_avx
def get_cuda_version_from_torch():
try:
import torch
return torch.version.cuda
except:
return None
def get_cuda_version_from_nvcc():
try:
output = subprocess.check_output(["nvcc", "--version"])
version_line = [
line for line in output.decode("utf-8").split("\n") if "release" in line
][0]
return version_line.split("release")[-1].strip().split(",")[0]
except:
return None
def get_cuda_version_from_nvidia_smi():
try:
output = subprocess.check_output(["nvidia-smi"]).decode("utf-8")
match = re.search(r"CUDA Version:\s+(\d+\.\d+)", output)
if match:
return match.group(1)
else:
return None
except:
return None
def get_cuda_version() -> str:
try:
cuda_version = get_cuda_version_from_torch()
if not cuda_version:
cuda_version = get_cuda_version_from_nvcc()
if not cuda_version:
cuda_version = get_cuda_version_from_nvidia_smi()
return cuda_version
except Exception:
return None
def _build_wheels(
pkg_name: str,
pkg_version: str,
base_url: str = None,
base_url_func: Callable[[str, str, str], str] = None,
pkg_file_func: Callable[[str, str, str, str, OSType], str] = None,
supported_cuda_versions: List[str] = ["11.7", "11.8"],
) -> Optional[str]:
"""
Build the URL for the package wheel file based on the package name, version, and CUDA version.
Args:
pkg_name (str): The name of the package.
pkg_version (str): The version of the package.
base_url (str): The base URL for downloading the package.
base_url_func (Callable): A function to generate the base URL.
pkg_file_func (Callable): build package file function.
function params: pkg_name, pkg_version, cuda_version, py_version, OSType
supported_cuda_versions (List[str]): The list of supported CUDA versions.
Returns:
Optional[str]: The URL for the package wheel file.
"""
os_type, _ = get_cpu_avx_support()
cuda_version = get_cuda_version()
py_version = platform.python_version()
py_version = "cp" + "".join(py_version.split(".")[0:2])
if os_type == OSType.DARWIN or not cuda_version:
return None
if cuda_version not in supported_cuda_versions:
print(
f"Warnning: {pkg_name} supported cuda version: {supported_cuda_versions}, replace to {supported_cuda_versions[-1]}"
)
cuda_version = supported_cuda_versions[-1]
cuda_version = "cu" + cuda_version.replace(".", "")
os_pkg_name = "linux_x86_64" if os_type == OSType.LINUX else "win_amd64"
if base_url_func:
base_url = base_url_func(pkg_version, cuda_version, py_version)
if base_url and base_url.endswith("/"):
base_url = base_url[:-1]
if pkg_file_func:
full_pkg_file = pkg_file_func(
pkg_name, pkg_version, cuda_version, py_version, os_type
)
else:
full_pkg_file = f"{pkg_name}-{pkg_version}+{cuda_version}-{py_version}-{py_version}-{os_pkg_name}.whl"
if not base_url:
return full_pkg_file
else:
return f"{base_url}/{full_pkg_file}"
def torch_requires(
torch_version: str = "2.0.1",
torchvision_version: str = "0.15.2",
torchaudio_version: str = "2.0.2",
):
torch_pkgs = [
f"torch=={torch_version}",
f"torchvision=={torchvision_version}",
f"torchaudio=={torchaudio_version}",
]
torch_cuda_pkgs = []
os_type, _ = get_cpu_avx_support()
if os_type != OSType.DARWIN:
cuda_version = get_cuda_version()
if cuda_version:
supported_versions = ["11.7", "11.8"]
# torch_url = f"https://download.pytorch.org/whl/{cuda_version}/torch-{torch_version}+{cuda_version}-{py_version}-{py_version}-{os_pkg_name}.whl"
# torchvision_url = f"https://download.pytorch.org/whl/{cuda_version}/torchvision-{torchvision_version}+{cuda_version}-{py_version}-{py_version}-{os_pkg_name}.whl"
torch_url = _build_wheels(
"torch",
torch_version,
base_url_func=lambda v, x, y: f"https://download.pytorch.org/whl/{x}",
supported_cuda_versions=supported_versions,
)
torchvision_url = _build_wheels(
"torchvision",
torchvision_version,
base_url_func=lambda v, x, y: f"https://download.pytorch.org/whl/{x}",
supported_cuda_versions=supported_versions,
)
torch_url_cached = cache_package(
torch_url, "torch", os_type == OSType.WINDOWS
)
torchvision_url_cached = cache_package(
torchvision_url, "torchvision", os_type == OSType.WINDOWS
)
torch_cuda_pkgs = [
f"torch @ {torch_url_cached}",
f"torchvision @ {torchvision_url_cached}",
f"torchaudio=={torchaudio_version}",
]
setup_spec.extras["torch"] = torch_pkgs
setup_spec.extras["torch_cpu"] = torch_pkgs
setup_spec.extras["torch_cuda"] = torch_cuda_pkgs
def llama_cpp_python_cuda_requires():
cuda_version = get_cuda_version()
device = "cpu"
if not cuda_version:
print("CUDA not support, use cpu version")
return
if not LLAMA_CPP_GPU_ACCELERATION:
print("Disable GPU acceleration")
return
# Supports GPU acceleration
device = "cu" + cuda_version.replace(".", "")
os_type, cpu_avx = get_cpu_avx_support()
print(f"OS: {os_type}, cpu avx: {cpu_avx}")
supported_os = [OSType.WINDOWS, OSType.LINUX]
if os_type not in supported_os:
print(
f"llama_cpp_python_cuda just support in os: {[r._value_ for r in supported_os]}"
)
return
cpu_device = ""
if cpu_avx == AVXType.AVX2 or cpu_avx == AVXType.AVX512:
cpu_device = "avx"
else:
cpu_device = "basic"
device += cpu_device
base_url = "https://github.com/jllllll/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui"
llama_cpp_version = "0.2.10"
py_version = "cp310"
os_pkg_name = "manylinux_2_31_x86_64" if os_type == OSType.LINUX else "win_amd64"
extra_index_url = f"{base_url}/llama_cpp_python_cuda-{llama_cpp_version}+{device}-{py_version}-{py_version}-{os_pkg_name}.whl"
extra_index_url, _ = encode_url(extra_index_url)
print(f"Install llama_cpp_python_cuda from {extra_index_url}")
setup_spec.extras["llama_cpp"].append(f"llama_cpp_python_cuda @ {extra_index_url}")
def core_requires():
"""
pip install dbgpt or pip install "dbgpt[core]"
"""
setup_spec.extras["core"] = [
"aiohttp==3.8.4",
"chardet==5.1.0",
"importlib-resources==5.12.0",
"python-dotenv==1.0.0",
"cachetools",
"pydantic<2,>=1",
]
# Simple command line dependencies
setup_spec.extras["cli"] = setup_spec.extras["core"] + [
"prettytable",
"click",
"psutil==5.9.4",
"colorama==0.4.6",
"tomlkit",
]
# Just use by DB-GPT internal, we should find the smallest dependency set for run
# we core unit test.
# The dependency "framework" is too large for now.
setup_spec.extras["simple_framework"] = setup_spec.extras["cli"] + [
"pydantic<2,>=1",
"httpx",
"jinja2",
"fastapi==0.98.0",
"uvicorn",
"shortuuid",
# change from fixed version 2.0.22 to variable version, because other
# dependencies are >=1.4, such as pydoris is <2
"SQLAlchemy>=1.4,<3",
# for cache
"msgpack",
# for cache
# TODO: pympler has not been updated for a long time and needs to
# find a new toolkit.
"pympler",
"sqlparse==0.4.4",
"duckdb==0.8.1",
"duckdb-engine",
]
# TODO: remove fschat from simple_framework
if BUILD_FROM_SOURCE:
setup_spec.extras["simple_framework"].append(
f"fschat @ {BUILD_FROM_SOURCE_URL_FAST_CHAT}"
)
else:
setup_spec.extras["simple_framework"].append("fschat")
setup_spec.extras["framework"] = setup_spec.extras["simple_framework"] + [
"coloredlogs",
"seaborn",
# https://github.com/eosphoros-ai/DB-GPT/issues/551
"pandas==2.0.3",
"auto-gpt-plugin-template",
"gTTS==2.3.1",
"langchain>=0.0.286",
"pymysql",
"jsonschema",
# TODO move transformers to default
# "transformers>=4.31.0",
"transformers>=4.34.0",
"alembic==1.12.0",
# for excel
"openpyxl==3.1.2",
"chardet==5.1.0",
"xlrd==2.0.1",
"aiofiles",
# for agent
"GitPython",
# For AWEL dag visualization, graphviz is a small package, also we can move it to default.
"graphviz",
]
def knowledge_requires():
"""
pip install "dbgpt[knowledge]"
"""
setup_spec.extras["knowledge"] = [
"spacy==3.5.3",
"chromadb==0.4.10",
"markdown",
"bs4",
"python-pptx",
"python-docx",
"pypdf",
"python-multipart",
"sentence-transformers",
]
def llama_cpp_requires():
"""
pip install "dbgpt[llama_cpp]"
"""
setup_spec.extras["llama_cpp"] = ["llama-cpp-python"]
llama_cpp_python_cuda_requires()
def _build_autoawq_requires() -> Optional[str]:
os_type, _ = get_cpu_avx_support()
if os_type == OSType.DARWIN:
return None
auto_gptq_version = get_latest_version(
"auto-gptq", "https://huggingface.github.io/autogptq-index/whl/cu118/", "0.5.1"
)
# eg. 0.5.1+cu118
auto_gptq_version = auto_gptq_version.split("+")[0]
def pkg_file_func(pkg_name, pkg_version, cuda_version, py_version, os_type):
pkg_name = pkg_name.replace("-", "_")
if os_type == OSType.DARWIN:
return None
os_pkg_name = (
"manylinux_2_17_x86_64.manylinux2014_x86_64.whl"
if os_type == OSType.LINUX
else "win_amd64.whl"
)
return f"{pkg_name}-{pkg_version}+{cuda_version}-{py_version}-{py_version}-{os_pkg_name}"
auto_gptq_url = _build_wheels(
"auto-gptq",
auto_gptq_version,
base_url_func=lambda v, x, y: f"https://huggingface.github.io/autogptq-index/whl/{x}/auto-gptq",
pkg_file_func=pkg_file_func,
supported_cuda_versions=["11.8"],
)
if auto_gptq_url:
print(f"Install auto-gptq from {auto_gptq_url}")
return f"auto-gptq @ {auto_gptq_url}"
else:
"auto-gptq"
def quantization_requires():
pkgs = []
os_type, _ = get_cpu_avx_support()
if os_type != OSType.WINDOWS:
pkgs = ["bitsandbytes"]
else:
latest_version = get_latest_version(
"bitsandbytes",
"https://jllllll.github.io/bitsandbytes-windows-webui",
"0.41.1",
)
extra_index_url = f"https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-{latest_version}-py3-none-win_amd64.whl"
local_pkg = cache_package(
extra_index_url, "bitsandbytes", os_type == OSType.WINDOWS
)
pkgs = [f"bitsandbytes @ {local_pkg}"]
print(pkgs)
# For chatglm2-6b-int4
pkgs += ["cpm_kernels"]
if os_type != OSType.DARWIN:
# Since transformers 4.35.0, the GPT-Q/AWQ model can be loaded using AutoModelForCausalLM.
# autoawq requirements:
# 1. Compute Capability 7.5 (sm75). Turing and later architectures are supported.
# 2. CUDA Toolkit 11.8 and later.
autoawq_url = _build_wheels(
"autoawq",
"0.1.7",
base_url_func=lambda v, x, y: f"https://github.com/casper-hansen/AutoAWQ/releases/download/v{v}",
supported_cuda_versions=["11.8"],
)
if autoawq_url:
print(f"Install autoawq from {autoawq_url}")
pkgs.append(f"autoawq @ {autoawq_url}")
else:
pkgs.append("autoawq")
auto_gptq_pkg = _build_autoawq_requires()
if auto_gptq_pkg:
pkgs.append(auto_gptq_pkg)
pkgs.append("optimum")
setup_spec.extras["quantization"] = pkgs
def all_vector_store_requires():
"""
pip install "dbgpt[vstore]"
"""
setup_spec.extras["vstore"] = [
"grpcio==1.47.5", # maybe delete it
"pymilvus==2.2.1",
"weaviate-client",
]
def all_datasource_requires():
"""
pip install "dbgpt[datasource]"
"""
setup_spec.extras["datasource"] = [
"pymssql",
"pymysql",
"pyspark",
"psycopg2",
# for doris
# mysqlclient 2.2.x have pkg-config issue on 3.10+
"mysqlclient==2.1.0",
"pydoris>=1.0.2,<2.0.0",
"clickhouse-connect",
]
def openai_requires():
"""
pip install "dbgpt[openai]"
"""
setup_spec.extras["openai"] = ["tiktoken"]
if BUILD_VERSION_OPENAI:
# Read openai sdk version from env
setup_spec.extras["openai"].append(f"openai=={BUILD_VERSION_OPENAI}")
else:
setup_spec.extras["openai"].append("openai")
setup_spec.extras["openai"] += setup_spec.extras["framework"]
setup_spec.extras["openai"] += setup_spec.extras["knowledge"]
def gpt4all_requires():
"""
pip install "dbgpt[gpt4all]"
"""
setup_spec.extras["gpt4all"] = ["gpt4all"]
def vllm_requires():
"""
pip install "dbgpt[vllm]"
"""
setup_spec.extras["vllm"] = ["vllm"]
def cache_requires():
"""
pip install "dbgpt[cache]"
"""
setup_spec.extras["cache"] = ["rocksdict"]
def default_requires():
"""
pip install "dbgpt[default]"
"""
setup_spec.extras["default"] = [
# "tokenizers==0.13.3",
"tokenizers>=0.14",
"accelerate>=0.20.3",
"protobuf==3.20.3",
"zhipuai",
"dashscope",
"chardet",
]
setup_spec.extras["default"] += setup_spec.extras["framework"]
setup_spec.extras["default"] += setup_spec.extras["knowledge"]
setup_spec.extras["default"] += setup_spec.extras["torch"]
setup_spec.extras["default"] += setup_spec.extras["quantization"]
setup_spec.extras["default"] += setup_spec.extras["cache"]
def all_requires():
requires = set()
for _, pkgs in setup_spec.extras.items():
for pkg in pkgs:
requires.add(pkg)
setup_spec.extras["all"] = list(requires)
def init_install_requires():
setup_spec.install_requires += setup_spec.extras["core"]
print(f"Install requires: \n{','.join(setup_spec.install_requires)}")
core_requires()
torch_requires()
knowledge_requires()
llama_cpp_requires()
quantization_requires()
all_vector_store_requires()
all_datasource_requires()
openai_requires()
gpt4all_requires()
vllm_requires()
cache_requires()
# must be last
default_requires()
all_requires()
init_install_requires()
# Packages to exclude when IS_DEV_MODE is False
excluded_packages = ["tests", "*.tests", "*.tests.*", "examples"]
if IS_DEV_MODE:
packages = find_packages(exclude=excluded_packages)
else:
packages = find_packages(
exclude=excluded_packages,
include=[
"dbgpt",
"dbgpt._private",
"dbgpt._private.*",
"dbgpt.cli",
"dbgpt.cli.*",
"dbgpt.configs",
"dbgpt.configs.*",
"dbgpt.core",
"dbgpt.core.*",
"dbgpt.util",
"dbgpt.util.*",
"dbgpt.model",
"dbgpt.model.proxy",
"dbgpt.model.proxy.*",
"dbgpt.model.operators",
"dbgpt.model.operators.*",
"dbgpt.model.utils",
"dbgpt.model.utils.*",
],
)
setuptools.setup(
name="dbgpt",
packages=packages,
version=DB_GPT_VERSION,
author="csunny",
author_email="cfqcsunny@gmail.com",
description="DB-GPT is an experimental open-source project that uses localized GPT "
"large models to interact with your data and environment."
" With this solution, you can be assured that there is no risk of data leakage, "
"and your data is 100% private and secure.",
long_description=long_description,
long_description_content_type="text/markdown",
install_requires=setup_spec.install_requires,
url="https://github.com/eosphoros-ai/DB-GPT",
license="https://opensource.org/license/mit/",
python_requires=">=3.10",
extras_require=setup_spec.extras,
entry_points={
"console_scripts": [
"dbgpt=dbgpt.cli.cli_scripts:main",
],
},
)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。