1 Star 0 Fork 153

杨树学/fatigue_detecting_1

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
mouth_detecting.py 6.85 KB
一键复制 编辑 原始数据 按行查看 历史
cungudafa 提交于 2019-12-25 23:21 . wxpythonUI界面
# -*- coding: utf-8 -*-
# import the necessary packages
from scipy.spatial import distance as dist
from imutils.video import FileVideoStream
from imutils.video import VideoStream
from imutils import face_utils
import numpy as np # 数据处理的库 numpy
import argparse
import imutils
import time
import dlib
import cv2
def eye_aspect_ratio(eye):
# 垂直眼标志(X,Y)坐标
A = dist.euclidean(eye[1], eye[5])# 计算两个集合之间的欧式距离
B = dist.euclidean(eye[2], eye[4])
# 计算水平之间的欧几里得距离
# 水平眼标志(X,Y)坐标
C = dist.euclidean(eye[0], eye[3])
# 眼睛长宽比的计算
ear = (A + B) / (2.0 * C)
# 返回眼睛的长宽比
return ear
def mouth_aspect_ratio(mouth):
A = np.linalg.norm(mouth[2] - mouth[9]) # 51, 59
B = np.linalg.norm(mouth[4] - mouth[7]) # 53, 57
C = np.linalg.norm(mouth[0] - mouth[6]) # 49, 55
mar = (A + B) / (2.0 * C)
return mar
# 定义两个常数
# 眼睛长宽比
# 闪烁阈值
EYE_AR_THRESH = 0.2
EYE_AR_CONSEC_FRAMES = 3
# 打哈欠长宽比
# 闪烁阈值
MAR_THRESH = 0.5
MOUTH_AR_CONSEC_FRAMES = 3
# 初始化帧计数器和眨眼总数
COUNTER = 0
TOTAL = 0
# 初始化帧计数器和打哈欠总数
mCOUNTER = 0
mTOTAL = 0
# 初始化DLIB的人脸检测器(HOG),然后创建面部标志物预测
print("[INFO] loading facial landmark predictor...")
# 第一步:使用dlib.get_frontal_face_detector() 获得脸部位置检测器
detector = dlib.get_frontal_face_detector()
# 第二步:使用dlib.shape_predictor获得脸部特征位置检测器
predictor = dlib.shape_predictor('./model/shape_predictor_68_face_landmarks.dat')
# 第三步:分别获取左右眼面部标志的索引
(lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
(rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]
(mStart, mEnd) = face_utils.FACIAL_LANDMARKS_IDXS["mouth"]
# 第四步:打开cv2 本地摄像头
cap = cv2.VideoCapture(0)
# 从视频流循环帧
while True:
# 第五步:进行循环,读取图片,并对图片做维度扩大,并进灰度化
ret, frame = cap.read()
frame = imutils.resize(frame, width=720)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# 第六步:使用detector(gray, 0) 进行脸部位置检测
rects = detector(gray, 0)
# 第七步:循环脸部位置信息,使用predictor(gray, rect)获得脸部特征位置的信息
for rect in rects:
shape = predictor(gray, rect)
# 第八步:将脸部特征信息转换为数组array的格式
shape = face_utils.shape_to_np(shape)
# 第九步:提取左眼和右眼坐标
leftEye = shape[lStart:lEnd]
rightEye = shape[rStart:rEnd]
# 嘴巴坐标
mouth = shape[mStart:mEnd]
# 第十步:构造函数计算左右眼的EAR值,使用平均值作为最终的EAR
leftEAR = eye_aspect_ratio(leftEye)
rightEAR = eye_aspect_ratio(rightEye)
ear = (leftEAR + rightEAR) / 2.0
# 打哈欠
mar = mouth_aspect_ratio(mouth)
# 第十一步:使用cv2.convexHull获得凸包位置,使用drawContours画出轮廓位置进行画图操作
leftEyeHull = cv2.convexHull(leftEye)
rightEyeHull = cv2.convexHull(rightEye)
cv2.drawContours(frame, [leftEyeHull], -1, (0, 255, 0), 1)
cv2.drawContours(frame, [rightEyeHull], -1, (0, 255, 0), 1)
mouthHull = cv2.convexHull(mouth)
cv2.drawContours(frame, [mouthHull], -1, (0, 255, 0), 1)
# 第十二步:进行画图操作,用矩形框标注人脸
left = rect.left()
top = rect.top()
right = rect.right()
bottom = rect.bottom()
cv2.rectangle(frame, (left, top), (right, bottom), (0, 255, 0), 3)
'''
分别计算左眼和右眼的评分求平均作为最终的评分,如果小于阈值,则加1,如果连续3次都小于阈值,则表示进行了一次眨眼活动
'''
# 第十三步:循环,满足条件的,眨眼次数+1
if ear < EYE_AR_THRESH:# 眼睛长宽比:0.2
COUNTER += 1
else:
# 如果连续3次都小于阈值,则表示进行了一次眨眼活动
if COUNTER >= EYE_AR_CONSEC_FRAMES:# 阈值:3
TOTAL += 1
# 重置眼帧计数器
COUNTER = 0
# 第十四步:进行画图操作,同时使用cv2.putText将眨眼次数进行显示
cv2.putText(frame, "Faces: {}".format(len(rects)), (10, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(frame, "Blinks: {}".format(TOTAL), (150, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(frame, "COUNTER: {}".format(COUNTER), (300, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(frame, "EAR: {:.2f}".format(ear), (450, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
'''
计算张嘴评分,如果小于阈值,则加1,如果连续3次都小于阈值,则表示打了一次哈欠,同一次哈欠大约在3帧
'''
# 同理,判断是否打哈欠
if mar > MAR_THRESH:# 张嘴阈值0.5
mCOUNTER += 1
cv2.putText(frame, "Yawning!", (10, 60),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
else:
# 如果连续3次都小于阈值,则表示打了一次哈欠
if mCOUNTER >= MOUTH_AR_CONSEC_FRAMES:# 阈值:3
mTOTAL += 1
# 重置嘴帧计数器
mCOUNTER = 0
cv2.putText(frame, "Yawning: {}".format(mTOTAL), (150, 60),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(frame, "mCOUNTER: {}".format(mCOUNTER), (300, 60),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(frame, "MAR: {:.2f}".format(mar), (480, 60),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
# 第十五步:进行画图操作,68个特征点标识
for (x, y) in shape:
cv2.circle(frame, (x, y), 1, (0, 0, 255), -1)
print('嘴巴实时长宽比:{:.2f} '.format(mar)+"\t是否张嘴:"+str([False,True][mar > MAR_THRESH]))
print('眼睛实时长宽比:{:.2f} '.format(ear)+"\t是否眨眼:"+str([False,True][COUNTER>=1]))
# 确定疲劳提示
if TOTAL >= 50 or mTOTAL>=15:
cv2.putText(frame, "SLEEP!!!", (100, 200),cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 3)
# 按q退出
cv2.putText(frame, "Press 'q': Quit", (20, 500),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (84, 255, 159), 2)
# 窗口显示 show with opencv
cv2.imshow("Frame", frame)
# if the `q` key was pressed, break from the loop
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 释放摄像头 release camera
cap.release()
# do a bit of cleanup
cv2.destroyAllWindows()
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/poplar-studies/fatigue_detecting_1.git
git@gitee.com:poplar-studies/fatigue_detecting_1.git
poplar-studies
fatigue_detecting_1
fatigue_detecting_1
master

搜索帮助