代码拉取完成,页面将自动刷新
同步操作将从 顾真牛/ai00_rwkv_server 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
import collections
import numpy
import os
import torch
from safetensors.torch import serialize_file, load_file
import time
import hashlib
import json
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--input", type=str, help="Path to input pth model")
parser.add_argument(
"--output",
type=str,
default="./converted.st",
help="Path to output safetensors model",
)
args = parser.parse_args()
def rename_key(rename, name):
for k, v in rename.items():
if k in name:
name = name.replace(k, v)
return name
def convert_file(pt_filename: str, sf_filename: str, rename={}, transpose_names=[], model_info={}):
loaded: collections.OrderedDict = torch.load(
pt_filename, map_location="cpu")
if "state_dict" in loaded:
loaded = loaded["state_dict"]
kk = list(loaded.keys())
version = 4
for x in kk:
if "ln_x" in x:
version = max(5, version)
if "gate.weight" in x:
version = max(5.1, version)
if int(version) == 5 and "att.time_decay" in x:
if len(loaded[x].shape) > 1:
if loaded[x].shape[1] > 1:
version = max(5.2, version)
if "time_maa" in x:
version = max(6, version)
print(f"Model detected: v{version:.1f}")
if version == 5.1:
_, n_emb = loaded["emb.weight"].shape
for k in kk:
if "time_decay" in k or "time_faaaa" in k:
# print(k, mm[k].shape)
loaded[k] = (
loaded[k].unsqueeze(1).repeat(
1, n_emb // loaded[k].shape[0])
)
with torch.no_grad():
for k in kk:
new_k = rename_key(rename, k).lower()
v = loaded[k].half()
del loaded[k]
for transpose_name in transpose_names:
if transpose_name in new_k:
dims = len(v.shape)
v = v.transpose(dims - 2, dims - 1)
print(f"{new_k}\t{v.shape}\t{v.dtype}")
loaded[new_k] = {
"dtype": str(v.dtype).split(".")[-1],
"shape": v.shape,
"data": v.numpy().tobytes(),
}
# 把 model_info 写入文件
dirname = os.path.dirname(sf_filename)
os.makedirs(dirname, exist_ok=True)
serialize_file(loaded, sf_filename, metadata=model_info)
# reload 函数读取 safetensors 文件中的 metadata 并打印出来
def read_metadata(sf_filename):
with open(sf_filename, 'rb') as f:
# 读取文件头部的JSON元数据
header_size = int.from_bytes(
f.read(8), byteorder='little', signed=False)
metadata_json = f.read(header_size)
return json.loads(metadata_json)
if __name__ == "__main__":
print(f"请选择语言 (Language): \n1.中文\n2.English\n")
choice = input("请输入序号 (Enter 1 or 2; default 1): ")
if choice == "1":
language = "zh"
print("\n已选择中文\n")
elif choice == "2":
language = "en"
print("\nUse English\n")
else:
language = "zh"
print("\n已选择中文\n")
# 假设这里的 model_type_dict 是一个字典,包含了中英文对应的模型类型描述
model_type_dict = {
"zh": {
"ask": {
"ask0": "输入模型类型 (默认rwkv)",
"ask1": "请选择要转换的模型类型: ",
"ask2": "请选择要转换模型的参数量: ",
"ask3": "请输入作者名: ",
"ask4": "请输入模型说明: ",
"ask5": "请输入RWKV版本 (默认x060): ",
},
"model_type": {
"rwkv": "RWKV 模型",
"lora": "RWKV LoRA",
"state": "RWKV init State",
},
"error": "输入错误,请重新输入!",
},
"en": {
"ask": {
"ask0": "Input model type (default rwkv)",
"ask1": "Please select the model you want to convert:",
"ask2": "Please select the number of parameters for the model you want to convert:",
"ask3": "Please enter the author name:",
"ask4": "Please enter the model description:",
"ask5": "Please enter RWKV version (default x060):",
},
"model_type": {
"rwkv": "RWKV model",
"lora": "RWKV LoRA",
"state": "RWKV init State",
},
"error": "Input error, please re-enter!"
}
}
print(f"\n{model_type_dict[language]['ask']['ask1']}")
for k, v in model_type_dict[language]["model_type"].items():
print(f"{k}: {v}")
choice = input(f"{model_type_dict[language]['ask']['ask0']}:")
if choice in model_type_dict[language]["model_type"]:
model_type = choice
print(f"\n已选择 {model_type_dict[language]['model_type'][model_type]}\n")
else:
model_type = "rwkv"
print(f"\n已选择 {model_type_dict[language]['model_type'][model_type]}\n")
print(f"\n{model_type_dict[language]['ask']['ask2']}")
print(f"(1)1B5\n(2)3B\n(3)7B\n(4)14B")
choice = input("Enter the number 1 - 4 (default 3): ")
if choice == "1":
model_size = "1B5"
elif choice == "2":
model_size = "3B"
elif choice == "3":
model_size = "7B"
elif choice == "4":
model_size = "14B"
else:
model_size = "7B"
rwkv_version = input(f"{model_type_dict[language]['ask']['ask5']}")
# 检查 rwkv_version 是否符合x060这样的格式
if not rwkv_version.startswith("x"):
rwkv_version = "x060"
elif len(rwkv_version) != 4:
rwkv_version = "x060"
# 检查 x 后三位是否是数字
elif not rwkv_version[1:].isdigit():
rwkv_version = "x060"
author_name = input(f"{model_type_dict[language]['ask']['ask3']}")
model_readme = input(f"{model_type_dict[language]['ask']['ask4']}")
if model_type == "rwkv":
sf_filename = f"rwkv_{model_size}.st"
elif model_type == "lora":
sf_filename = f"rwkv_{model_size}.lora"
elif model_type == "state":
sf_filename = f"rwkv_{model_size}.state"
else:
print("输入错误,请重新输入!")
exit()
current_time = time.time()
def get_sha(file_path):
with open(file_path, 'rb') as f:
sha1 = hashlib.sha1()
while True:
data = f.read(65536)
if not data:
break
sha1.update(data)
return sha1.hexdigest()
pth_SHA = get_sha(args.input)
model_info = {
"model_type": model_type,
"model_size": model_size,
"author_name": author_name,
"model_readme": model_readme,
"covertime": str(current_time),
"pth_SHA": pth_SHA,
"rwkv_version": rwkv_version,
}
print(f"正在转换模型: {model_info}")
convert_file(
args.input,
args.output,
rename={"time_faaaa": "time_first", "time_maa": "time_mix",
"lora_A": "lora.0", "lora_B": "lora.1"},
transpose_names=["time_mix_w1", "time_mix_w2",
"time_decay_w1", "time_decay_w2", "time_state", "lora.0"],
model_info=model_info
)
print(f"Saved to {args.output}")
print(f"{args.output} __metadata__ :\n")
read_metadata = read_metadata(args.output)
print(read_metadata['__metadata__'])
exit()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。