From 6a6cf2fedb1644b32b06ea76964a36d00c9cc517 Mon Sep 17 00:00:00 2001 From: xiazhenyu <1206064332@qq.com> Date: Wed, 23 Mar 2022 01:18:57 +0000 Subject: [PATCH] add code of pytorch --- 6_pytorch/fig-res-8.2.py | 238 +++++++++++++++++++++++++++++++++++++++ 6_pytorch/fig-res-8.3.py | 86 ++++++++++++++ 6_pytorch/fig-res-8.4.py | 91 +++++++++++++++ 6_pytorch/fig-res-8.5.py | 107 ++++++++++++++++++ 6_pytorch/fig-res-8.6.py | 116 +++++++++++++++++++ 5 files changed, 638 insertions(+) create mode 100644 6_pytorch/fig-res-8.2.py create mode 100644 6_pytorch/fig-res-8.3.py create mode 100644 6_pytorch/fig-res-8.4.py create mode 100644 6_pytorch/fig-res-8.5.py create mode 100644 6_pytorch/fig-res-8.6.py diff --git a/6_pytorch/fig-res-8.2.py b/6_pytorch/fig-res-8.2.py new file mode 100644 index 0000000..51310bc --- /dev/null +++ b/6_pytorch/fig-res-8.2.py @@ -0,0 +1,238 @@ +import torch +import numpy as np +from torch import nn +from torch.autograd import Variable +import torch.nn.functional as F +import matplotlib.pyplot as plt + +#%matplotlib inline +np.random.seed(1) +m = 400 # 样本数量 +N = int(m/2) # 每一类的点的个数 +D = 2 # 维度 +x = np.zeros((m, D)) +y = np.zeros((m, 1), dtype='uint8') # label 向量, 0 表示红色, 1 表示蓝色 +a = 4 + +# 生成两类数据 +for j in range(2): + ix = range(N*j,N*(j+1)) + t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta + r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius + x[ix] = np.c_[r*np.sin(t), r*np.cos(t)] + y[ix] = j + +plt.ylabel("x2") +plt.xlabel("x1") +# 绘出生成的数据 +for i in range(m): + if y[i] == 0: + plt.scatter(x[i, 0], x[i, 1], marker='8',c=0, s=40, cmap=plt.cm.Spectral) + else: + plt.scatter(x[i, 0], x[i, 1], marker='^',c=1, s=40) +plt.savefig('fig-res-8.2.pdf') +plt.show() +# #尝试用逻辑回归解决 +# x = torch.from_numpy(x).float() +# y = torch.from_numpy(y).float() + +# w = nn.Parameter(torch.randn(2, 1)) +# b = nn.Parameter(torch.zeros(1)) + +# # [w,b]是模型的参数; 1e-1是学习速率 +# optimizer = torch.optim.SGD([w, b], 1e-1) +# criterion = nn.BCEWithLogitsLoss() +# def logistic_regression(x): +# return torch.mm(x, w) + b + + +# for e in range(100): +# # 模型正向计算 +# out = logistic_regression(Variable(x)) +# # 计算误差 +# loss = criterion(out, Variable(y)) +# # 误差反传和参数更新 +# optimizer.zero_grad() +# loss.backward() +# optimizer.step() +# if (e + 1) % 20 == 0: +# print('epoch:{}, loss:{}'.format(e+1, loss.item())) + + +# def plot_decision_boundary(model, x, y): +# # Set min and max values and give it some padding +# x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1 +# y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1 +# h = 0.01 +# # Generate a grid of points with distance h between them +# xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min,y_max, h)) + +# # Predict the function value for the whole grid .c_ 按行连接两个矩阵,左右相加。 +# Z = model(np.c_[xx.ravel(), yy.ravel()]) +# Z = Z.reshape(xx.shape) +# # Plot the contour and training examples +# plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) +# plt.ylabel("x2") +# plt.xlabel("x1") +# plt.scatter(x[:, 0], x[:, 1], c=y.reshape(-1), s=40, cmap=plt.cm.Spectral) + +# def plot_logistic(x): +# x = Variable(torch.from_numpy(x).float()) +# out = F.sigmoid(logistic_regression(x)) +# out = (out > 0.5) * 1 +# return out.data.numpy() + +# plot_decision_boundary(lambda x: plot_logistic(x), x.numpy(), y.numpy()) +# plt.title('logistic regression') +# plt.savefig('fig-res-8.3.pdf') + + +# # 定义两层神经网络的参数 +# w1 = nn.Parameter(torch.randn(2, 4) * 0.01) # 输入维度为2, 隐藏层神经元个数4 +# b1 = nn.Parameter(torch.zeros(4)) +# w2 = nn.Parameter(torch.randn(4, 1) * 0.01) # 隐层神经元为4, 输出单元为1 +# b2 = nn.Parameter(torch.zeros(1)) + +# def mlp_network(x): +# x1 = torch.mm(x, w1) + b1 +# x1 = F.tanh(x1) # 使用 PyTorch 自带的 tanh 激活函数 +# x2 = torch.mm(x1, w2) + b2 +# return x2 + +# # 定义优化器和损失函数 +# optimizer = torch.optim.SGD([w1, w2, b1, b2], 1.) +# criterion = nn.BCEWithLogitsLoss() + +# for e in range(10000): +# # 正向计算 +# out = mlp_network(Variable(x)) +# # 计算误差 +# loss = criterion(out, Variable(y)) +# # 计算梯度并更新权重 +# optimizer.zero_grad() +# loss.backward() +# optimizer.step() +# if (e + 1) % 1000 == 0: +# print('epoch: {}, loss: {}'.format(e+1, loss.item())) + +# def plot_network(x): +# x = Variable(torch.from_numpy(x).float()) +# x1 = torch.mm(x, w1) + b1 +# x1 = F.tanh(x1) +# x2 = torch.mm(x1, w2) + b2 +# out = F.sigmoid(x2) +# out = (out > 0.5) * 1 +# return out.data.numpy() + +# plot_decision_boundary(lambda x: plot_network(x), x.numpy(), y.numpy()) +# plt.title('2 layer network') +# plt.savefig('fig-res-8.4.pdf') + +# # Sequential +# seq_net = nn.Sequential( +# nn.Linear(2, 4), # PyTorch 中的线性层, wx + b +# nn.Tanh(), +# nn.Linear(4, 1) +# ) + +# # 序列模块可以通过索引访问每一层 +# seq_net[0] # 第一层 + +# # 打印出第一层的权重 +# w0 = seq_net[0].weight +# print(w0) + + +# # 通过 parameters 可以取得模型的参数 +# param = seq_net.parameters() +# # 定义优化器 +# optim = torch.optim.SGD(param, 1.) + +# # 训练 10000 次 +# for e in range(10000): +# # 网络正向计算 +# out = seq_net(Variable(x)) +# # 计算误差 +# loss = criterion(out, Variable(y)) +# # 反向传播、 更新权重 +# optim.zero_grad() +# loss.backward() +# optim.step() +# # 打印损失 +# if (e + 1) % 1000 == 0: +# print('epoch: {}, loss: {}'.format(e+1, loss.item())) + + +# def plot_seq(x): +# out = F.sigmoid(seq_net(Variable(torch.from_numpy(x).float()))).data.numpy() +# out = (out > 0.5) * 1 +# return out + +# plot_decision_boundary(lambda x: plot_seq(x), x.numpy(), y.numpy()) +# plt.title('sequential') +# plt.savefig('fig-res-8.5.pdf') + +# torch.save(seq_net, 'save_seq_net.pth') + +# # 读取保存的模型 +# seq_net1 = torch.load('save_seq_net.pth') +# # 打印加载的模型 +# seq_net1 + +# print(seq_net1[0].weight) + +# # 保存模型参数 +# torch.save(seq_net.state_dict(), 'save_seq_net_params.pth') + +# # 定义网络架构 +# seq_net2 = nn.Sequential( +# nn.Linear(2, 4), +# nn.Tanh(), +# nn.Linear(4, 1) +# ) +# # 加载网络参数 +# seq_net2.load_state_dict(torch.load('save_seq_net_params.pth')) + +# # 打印网络结构 +# seq_net2 +# print(seq_net2[0].weight) + +# class Module_Net(nn.Module): +# def __init__(self, num_input, num_hidden, num_output): +# super(Module_Net, self).__init__() +# self.layer1 = nn.Linear(num_input, num_hidden) +# self.layer2 = nn.Tanh() +# self.layer3 = nn.Linear(num_hidden, num_output) + +# def forward(self, x): +# x = self.layer1(x) +# x = self.layer2(x) +# x = self.layer3(x) +# return x + +# mo_net = Module_Net(2, 4, 1) +# # 访问模型中的某层可以直接通过名字, 网络第一层 +# l1 = mo_net.layer1 +# print(l1) + + +# optim = torch.optim.SGD(mo_net.parameters(), 1.) +# # 训练 10000 次 +# for e in range(10000): +# # 网络正向计算 +# out = mo_net(Variable(x)) +# # 计算误差 +# loss = criterion(out, Variable(y)) +# # 误差反传、 更新参数 +# optim.zero_grad() +# loss.backward() +# optim.step() +# # 打印损失 +# if (e + 1) % 1000 == 0: +# print('epoch: {}, loss: {}'.format(e+1, loss.item())) + +# torch.save(mo_net.state_dict(), 'module_net.pth') + + + + diff --git a/6_pytorch/fig-res-8.3.py b/6_pytorch/fig-res-8.3.py new file mode 100644 index 0000000..ab996b2 --- /dev/null +++ b/6_pytorch/fig-res-8.3.py @@ -0,0 +1,86 @@ +import torch +import numpy as np +from torch import nn +from torch.autograd import Variable +import torch.nn.functional as F +import matplotlib.pyplot as plt + +plt.rcParams['font.sans-serif']=['SimHei'] +plt.rcParams['axes.unicode_minus'] = False + +#%matplotlib inline +np.random.seed(1) +m = 400 # 样本数量 +N = int(m/2) # 每一类的点的个数 +D = 2 # 维度 +x = np.zeros((m, D)) +y = np.zeros((m, 1), dtype='uint8') # label 向量, 0 表示红色, 1 表示蓝色 +a = 4 + +# 生成两类数据 +for j in range(2): + ix = range(N*j,N*(j+1)) + t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta + r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius + x[ix] = np.c_[r*np.sin(t), r*np.cos(t)] + y[ix] = j + +#尝试用逻辑回归解决 +x = torch.from_numpy(x).float() +y = torch.from_numpy(y).float() + +w = nn.Parameter(torch.randn(2, 1)) +b = nn.Parameter(torch.zeros(1)) + +# [w,b]是模型的参数; 1e-1是学习速率 +optimizer = torch.optim.SGD([w, b], 1e-1) +criterion = nn.BCEWithLogitsLoss() +def logistic_regression(x): + return torch.mm(x, w) + b + + +for e in range(100): + # 模型正向计算 + out = logistic_regression(Variable(x)) + # 计算误差 + loss = criterion(out, Variable(y)) + # 误差反传和参数更新 + optimizer.zero_grad() + loss.backward() + optimizer.step() + if (e + 1) % 20 == 0: + print('epoch:{}, loss:{}'.format(e+1, loss.item())) + + +def plot_decision_boundary(model, x, y): + # Set min and max values and give it some padding + x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1 + y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1 + h = 0.01 + # Generate a grid of points with distance h between them + xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min,y_max, h)) + + # Predict the function value for the whole grid .c_ 按行连接两个矩阵,左右相加。 + Z = model(np.c_[xx.ravel(), yy.ravel()]) + Z = Z.reshape(xx.shape) + # Plot the contour and training examples + plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) + plt.ylabel("x2") + plt.xlabel("x1") + for i in range(m): + if y[i] == 0: + plt.scatter(x[i, 0], x[i, 1], marker='8',c=0, s=40, cmap=plt.cm.Spectral) + else: + plt.scatter(x[i, 0], x[i, 1], marker='^',c=1, s=40) + + +def plot_logistic(x): + x = Variable(torch.from_numpy(x).float()) + out = F.sigmoid(logistic_regression(x)) + out = (out > 0.5) * 1 + return out.data.numpy() + +plot_decision_boundary(lambda x: plot_logistic(x), x.numpy(), y.numpy()) +plt.title('逻辑回归') +plt.savefig('fig-res-8.3.pdf') +plt.show() \ No newline at end of file diff --git a/6_pytorch/fig-res-8.4.py b/6_pytorch/fig-res-8.4.py new file mode 100644 index 0000000..57caf94 --- /dev/null +++ b/6_pytorch/fig-res-8.4.py @@ -0,0 +1,91 @@ +import torch +import numpy as np +from torch import nn +from torch.autograd import Variable +import torch.nn.functional as F +import matplotlib.pyplot as plt + +plt.rcParams['font.sans-serif']=['SimHei'] +plt.rcParams['axes.unicode_minus'] = False +#%matplotlib inline +np.random.seed(1) +m = 400 # 样本数量 +N = int(m/2) # 每一类的点的个数 +D = 2 # 维度 +x = np.zeros((m, D)) +y = np.zeros((m, 1), dtype='uint8') # label 向量, 0 表示红色, 1 表示蓝色 +a = 4 + +# 生成两类数据 +for j in range(2): + ix = range(N*j,N*(j+1)) + t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta + r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius + x[ix] = np.c_[r*np.sin(t), r*np.cos(t)] + y[ix] = j + +x = torch.from_numpy(x).float() +y = torch.from_numpy(y).float() + +# 定义两层神经网络的参数 +w1 = nn.Parameter(torch.randn(2, 4) * 0.01) # 输入维度为2, 隐藏层神经元个数4 +b1 = nn.Parameter(torch.zeros(4)) +w2 = nn.Parameter(torch.randn(4, 1) * 0.01) # 隐层神经元为4, 输出单元为1 +b2 = nn.Parameter(torch.zeros(1)) + +def mlp_network(x): + x1 = torch.mm(x, w1) + b1 + x1 = F.tanh(x1) # 使用 PyTorch 自带的 tanh 激活函数 + x2 = torch.mm(x1, w2) + b2 + return x2 + +# 定义优化器和损失函数 +optimizer = torch.optim.SGD([w1, w2, b1, b2], 1.) +criterion = nn.BCEWithLogitsLoss() + +for e in range(10000): + # 正向计算 + out = mlp_network(Variable(x)) + # 计算误差 + loss = criterion(out, Variable(y)) + # 计算梯度并更新权重 + optimizer.zero_grad() + loss.backward() + optimizer.step() + if (e + 1) % 1000 == 0: + print('epoch: {}, loss: {}'.format(e+1, loss.item())) + +def plot_decision_boundary(model, x, y): + # Set min and max values and give it some padding + x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1 + y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1 + h = 0.01 + # Generate a grid of points with distance h between them + xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min,y_max, h)) + + # Predict the function value for the whole grid .c_ 按行连接两个矩阵,左右相加。 + Z = model(np.c_[xx.ravel(), yy.ravel()]) + Z = Z.reshape(xx.shape) + # Plot the contour and training examples + plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) + plt.ylabel("x2") + plt.xlabel("x1") + for i in range(m): + if y[i] == 0: + plt.scatter(x[i, 0], x[i, 1], marker='8',c=0, s=40, cmap=plt.cm.Spectral) + else: + plt.scatter(x[i, 0], x[i, 1], marker='^',c=1, s=40) + +def plot_network(x): + x = Variable(torch.from_numpy(x).float()) + x1 = torch.mm(x, w1) + b1 + x1 = F.tanh(x1) + x2 = torch.mm(x1, w2) + b2 + out = F.sigmoid(x2) + out = (out > 0.5) * 1 + return out.data.numpy() + +plot_decision_boundary(lambda x: plot_network(x), x.numpy(), y.numpy()) +plt.title('2层神经网络') +plt.savefig('fig-res-8.4.pdf') +plt.show() \ No newline at end of file diff --git a/6_pytorch/fig-res-8.5.py b/6_pytorch/fig-res-8.5.py new file mode 100644 index 0000000..673bc68 --- /dev/null +++ b/6_pytorch/fig-res-8.5.py @@ -0,0 +1,107 @@ +import torch +import numpy as np +from torch import nn +from torch.autograd import Variable +import torch.nn.functional as F +import matplotlib.pyplot as plt +import matplotlib as mpl + +plt.rcParams['font.sans-serif']=['SimHei'] +plt.rcParams['axes.unicode_minus'] = False + +#%matplotlib inline +np.random.seed(1) +m = 400 # 样本数量 +N = int(m/2) # 每一类的点的个数 +D = 2 # 维度 +x = np.zeros((m, D)) +y = np.zeros((m, 1), dtype='uint8') # label 向量, 0 表示红色, 1 表示蓝色 +a = 4 + +criterion = nn.BCEWithLogitsLoss() + +# 生成两类数据 +for j in range(2): + ix = range(N*j,N*(j+1)) + t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta + r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius + x[ix] = np.c_[r*np.sin(t), r*np.cos(t)] + y[ix] = j + + +def plot_decision_boundary(model, x, y): + # Set min and max values and give it some padding + x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1 + y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1 + h = 0.01 + # Generate a grid of points with distance h between them + xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min,y_max, h)) + + # Predict the function value for the whole grid .c_ 按行连接两个矩阵,左右相加。 + Z = model(np.c_[xx.ravel(), yy.ravel()]) + Z = Z.reshape(xx.shape) + # Plot the contour and training examples + plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) + plt.ylabel("x2") + plt.xlabel("x1") + for i in range(m): + if y[i] == 0: + plt.scatter(x[i, 0], x[i, 1], marker='8',c=0, s=40, cmap=plt.cm.Spectral) + else: + plt.scatter(x[i, 0], x[i, 1], marker='^',c=1, s=40) + +#尝试用逻辑回归解决 +x = torch.from_numpy(x).float() +y = torch.from_numpy(y).float() + + +# Sequential +seq_net = nn.Sequential( + nn.Linear(2, 4), # PyTorch 中的线性层, wx + b + nn.Tanh(), + nn.Linear(4, 1) +) + +# 序列模块可以通过索引访问每一层 +seq_net[0] # 第一层 + +# 打印出第一层的权重 +w0 = seq_net[0].weight +print(w0) + + +# 通过 parameters 可以取得模型的参数 +param = seq_net.parameters() +# 定义优化器 +optim = torch.optim.SGD(param, 1.) + +# 训练 10000 次 +for e in range(10000): + # 网络正向计算 + out = seq_net(Variable(x)) + # 计算误差 + loss = criterion(out, Variable(y)) + # 反向传播、 更新权重 + optim.zero_grad() + loss.backward() + optim.step() + # 打印损失 + if (e + 1) % 1000 == 0: + print('epoch: {}, loss: {}'.format(e+1, loss.item())) + + +def plot_seq(x): + out = F.sigmoid(seq_net(Variable(torch.from_numpy(x).float()))).data.numpy() + out = (out > 0.5) * 1 + return out + +plot_decision_boundary(lambda x: plot_seq(x), x.numpy(), y.numpy()) +mpl.rcParams['font.family'] = 'SimHei' +plt.rcParams['axes.unicode_minus'] = False + +# plt.title('序列化网络') +# plt.savefig('fig-res-8.5.pdf') +plt.title('模块定义网络') +plt.savefig('fig-res-8.6.pdf') +plt.show() +torch.save(seq_net, 'save_seq_net.pth') \ No newline at end of file diff --git a/6_pytorch/fig-res-8.6.py b/6_pytorch/fig-res-8.6.py new file mode 100644 index 0000000..2e05ed6 --- /dev/null +++ b/6_pytorch/fig-res-8.6.py @@ -0,0 +1,116 @@ +import torch +import numpy as np +from torch import nn +from torch.autograd import Variable +import torch.nn.functional as F +import matplotlib.pyplot as plt + +#%matplotlib inline +np.random.seed(1) +m = 400 # 样本数量 +N = int(m/2) # 每一类的点的个数 +D = 2 # 维度 +x = np.zeros((m, D)) +y = np.zeros((m, 1), dtype='uint8') # label 向量, 0 表示红色, 1 表示蓝色 +a = 4 + +criterion = nn.BCEWithLogitsLoss() + +# 生成两类数据 +for j in range(2): + ix = range(N*j,N*(j+1)) + t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta + r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius + x[ix] = np.c_[r*np.sin(t), r*np.cos(t)] + y[ix] = j + + +def plot_decision_boundary(model, x, y): + # Set min and max values and give it some padding + x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1 + y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1 + h = 0.01 + # Generate a grid of points with distance h between them + xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min,y_max, h)) + + # Predict the function value for the whole grid .c_ 按行连接两个矩阵,左右相加。 + Z = model(np.c_[xx.ravel(), yy.ravel()]) + Z = Z.reshape(xx.shape) + # Plot the contour and training examples + plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) + plt.ylabel("x2") + plt.xlabel("x1") + for i in range(m): + if y[i] == 0: + plt.scatter(x[i, 0], x[i, 1], marker='8',c=0, s=40, cmap=plt.cm.Spectral) + else: + plt.scatter(x[i, 0], x[i, 1], marker='^',c=1, s=40) + +#尝试用逻辑回归解决 +x = torch.from_numpy(x).float() +y = torch.from_numpy(y).float() + +seq_net = nn.Sequential( + nn.Linear(2, 4), # PyTorch 中的线性层, wx + b + nn.Tanh(), + nn.Linear(4, 1) +) + +# 读取保存的模型 +seq_net1 = torch.load('save_seq_net.pth') +# 打印加载的模型 +seq_net1 + +print(seq_net1[0].weight) + +# 保存模型参数 +torch.save(seq_net.state_dict(), 'save_seq_net_params.pth') + +# 定义网络架构 +seq_net2 = nn.Sequential( + nn.Linear(2, 4), + nn.Tanh(), + nn.Linear(4, 1) +) +# 加载网络参数 +seq_net2.load_state_dict(torch.load('save_seq_net_params.pth')) + +# 打印网络结构 +seq_net2 +print(seq_net2[0].weight) + +class Module_Net(nn.Module): + def __init__(self, num_input, num_hidden, num_output): + super(Module_Net, self).__init__() + self.layer1 = nn.Linear(num_input, num_hidden) + self.layer2 = nn.Tanh() + self.layer3 = nn.Linear(num_hidden, num_output) + + def forward(self, x): + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + return x + +mo_net = Module_Net(2, 4, 1) +# 访问模型中的某层可以直接通过名字, 网络第一层 +l1 = mo_net.layer1 +print(l1) + + +optim = torch.optim.SGD(mo_net.parameters(), 1.) + # 训练 10000 次 +for e in range(10000): + # 网络正向计算 + out = mo_net(Variable(x)) + # 计算误差 + loss = criterion(out, Variable(y)) + # 误差反传、 更新参数 + optim.zero_grad() + loss.backward() + optim.step() + # 打印损失 + if (e + 1) % 1000 == 0: + print('epoch: {}, loss: {}'.format(e+1, loss.item())) + +torch.save(mo_net.state_dict(), 'module_net.pth') \ No newline at end of file -- Gitee