代码拉取完成,页面将自动刷新
import os
import logging
from collections import OrderedDict
from typing import List, Dict
from transformers import BertTokenizer
from serializer import Serializer
from vocab import Vocab
from utils import save_pkl, load_csv
logger = logging.getLogger(__name__)
def _handle_pos_limit(pos: List[int], limit: int) -> List[int]:
for i, p in enumerate(pos):
if p > limit:
pos[i] = limit
if p < -limit:
pos[i] = -limit
return [p + limit + 1 for p in pos]
def _add_pos_seq(train_data: List[Dict], cfg):
for d in train_data:
entities_idx = [d['head_idx'], d['tail_idx']
] if d['head_idx'] < d['tail_idx'] else [d['tail_idx'], d['head_idx']]
d['head_pos'] = list(map(lambda i: i - d['head_idx'], list(range(d['seq_len']))))
d['head_pos'] = _handle_pos_limit(d['head_pos'], int(cfg.pos_limit))
d['tail_pos'] = list(map(lambda i: i - d['tail_idx'], list(range(d['seq_len']))))
d['tail_pos'] = _handle_pos_limit(d['tail_pos'], int(cfg.pos_limit))
if cfg.model_name == 'cnn':
if cfg.use_pcnn:
# 当句子无法分隔成三段时,无法使用PCNN
# 比如: [head, ... tail] or [... head, tail, ...] 无法使用统一方式 mask 分段
d['entities_pos'] = [1] * (entities_idx[0] + 1) + [2] * (entities_idx[1] - entities_idx[0] - 1) +\
[3] * (d['seq_len'] - entities_idx[1])
def _convert_tokens_into_index(data: List[Dict], vocab):
unk_str = '[UNK]'
unk_idx = vocab.word2idx[unk_str]
for d in data:
d['token2idx'] = [vocab.word2idx.get(i, unk_idx) for i in d['tokens']]
d['seq_len'] = len(d['token2idx'])
def _serialize_sentence(data: List[Dict], serial, cfg):
for d in data:
sent = d['sentence'].strip()
sent = sent.replace(d['head'], ' head ', 1).replace(d['tail'], ' tail ', 1)
d['tokens'] = serial(sent, never_split=['head', 'tail'])
head_idx, tail_idx = d['tokens'].index('head'), d['tokens'].index('tail')
d['head_idx'], d['tail_idx'] = head_idx, tail_idx
if cfg.replace_entity_with_type:
if cfg.replace_entity_with_scope:
d['tokens'][head_idx], d['tokens'][tail_idx] = 'HEAD_' + d['head_type'], 'TAIL_' + d['tail_type']
else:
d['tokens'][head_idx], d['tokens'][tail_idx] = d['head_type'], d['tail_type']
else:
if cfg.replace_entity_with_scope:
d['tokens'][head_idx], d['tokens'][tail_idx] = 'HEAD', 'TAIL'
else:
d['tokens'][head_idx], d['tokens'][tail_idx] = d['head'], d['tail']
def _lm_serialize(data: List[Dict], cfg):
logger.info('use bert tokenizer...')
tokenizer = BertTokenizer.from_pretrained(cfg.lm_file)
for d in data:
sent = d['sentence'].strip()
sent = sent.replace(d['head'], d['head_type'], 1).replace(d['tail'], d['tail_type'], 1)
sent += '[SEP]' + d['head'] + '[SEP]' + d['tail']
d['token2idx'] = tokenizer.encode(sent, add_special_tokens=True)
d['seq_len'] = len(d['token2idx'])
def _add_relation_data(rels: Dict, data: List) -> None:
for d in data:
d['rel2idx'] = rels[d['relation']]['index']
d['head_type'] = rels[d['relation']]['head_type']
d['tail_type'] = rels[d['relation']]['tail_type']
def _handle_relation_data(relation_data: List[Dict]) -> Dict:
rels = OrderedDict()
relation_data = sorted(relation_data, key=lambda i: int(i['index']))
for d in relation_data:
rels[d['relation']] = {
'index': int(d['index']),
'head_type': d['head_type'],
'tail_type': d['tail_type'],
}
return rels
def preprocess(cfg):
logger.info('===== start preprocess data =====')
train_fp = os.path.join(cfg.cwd, cfg.data_path, 'train.csv')
valid_fp = os.path.join(cfg.cwd, cfg.data_path, 'valid.csv')
test_fp = os.path.join(cfg.cwd, cfg.data_path, 'test.csv')
relation_fp = os.path.join(cfg.cwd, cfg.data_path, 'relation.csv')
logger.info('load raw files...')
train_data = load_csv(train_fp)
valid_data = load_csv(valid_fp)
test_data = load_csv(test_fp)
relation_data = load_csv(relation_fp)
logger.info('convert relation into index...')
rels = _handle_relation_data(relation_data)
_add_relation_data(rels, train_data)
_add_relation_data(rels, valid_data)
_add_relation_data(rels, test_data)
logger.info('verify whether use pretrained language models...')
if cfg.model_name == 'lm':
logger.info('use pretrained language models serialize sentence...')
_lm_serialize(train_data, cfg)
_lm_serialize(valid_data, cfg)
_lm_serialize(test_data, cfg)
else:
logger.info('serialize sentence into tokens...')
serializer = Serializer(do_chinese_split=cfg.chinese_split, do_lower_case=True)
serial = serializer.serialize
_serialize_sentence(train_data, serial, cfg)
_serialize_sentence(valid_data, serial, cfg)
_serialize_sentence(test_data, serial, cfg)
logger.info('build vocabulary...')
vocab = Vocab('word')
train_tokens = [d['tokens'] for d in train_data]
valid_tokens = [d['tokens'] for d in valid_data]
test_tokens = [d['tokens'] for d in test_data]
sent_tokens = [*train_tokens, *valid_tokens, *test_tokens]
for sent in sent_tokens:
vocab.add_words(sent)
vocab.trim(min_freq=cfg.min_freq)
logger.info('convert tokens into index...')
_convert_tokens_into_index(train_data, vocab)
_convert_tokens_into_index(valid_data, vocab)
_convert_tokens_into_index(test_data, vocab)
logger.info('build position sequence...')
_add_pos_seq(train_data, cfg)
_add_pos_seq(valid_data, cfg)
_add_pos_seq(test_data, cfg)
logger.info('save data for backup...')
os.makedirs(os.path.join(cfg.cwd, cfg.out_path), exist_ok=True)
train_save_fp = os.path.join(cfg.cwd, cfg.out_path, 'train.pkl')
valid_save_fp = os.path.join(cfg.cwd, cfg.out_path, 'valid.pkl')
test_save_fp = os.path.join(cfg.cwd, cfg.out_path, 'test.pkl')
save_pkl(train_data, train_save_fp)
save_pkl(valid_data, valid_save_fp)
save_pkl(test_data, test_save_fp)
if cfg.model_name != 'lm':
vocab_save_fp = os.path.join(cfg.cwd, cfg.out_path, 'vocab.pkl')
vocab_txt = os.path.join(cfg.cwd, cfg.out_path, 'vocab.txt')
save_pkl(vocab, vocab_save_fp)
logger.info('save vocab in txt file, for watching...')
with open(vocab_txt, 'w', encoding='utf-8') as f:
f.write(os.linesep.join(vocab.word2idx.keys()))
logger.info('===== end preprocess data =====')
if __name__ == '__main__':
pass
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。