1 Star 1 Fork 7

zhouhuazhu97@gmail.com/GFPGAN

forked from Gitee 极速下载/GFPGAN 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
inference_gfpgan.py 5.15 KB
一键复制 编辑 原始数据 按行查看 历史
import argparse
import cv2
import glob
import numpy as np
import os
import torch
from basicsr.utils import imwrite
from gfpgan import GFPGANer
def main():
"""Inference demo for GFPGAN.
"""
parser = argparse.ArgumentParser()
parser.add_argument('--upscale', type=int, default=2, help='The final upsampling scale of the image')
parser.add_argument('--arch', type=str, default='clean', help='The GFPGAN architecture. Option: clean | original')
parser.add_argument('--channel', type=int, default=2, help='Channel multiplier for large networks of StyleGAN2')
parser.add_argument('--model_path', type=str, default='experiments/pretrained_models/GFPGANCleanv1-NoCE-C2.pth')
parser.add_argument('--bg_upsampler', type=str, default='realesrgan', help='background upsampler')
parser.add_argument(
'--bg_tile', type=int, default=400, help='Tile size for background sampler, 0 for no tile during testing')
parser.add_argument('--test_path', type=str, default='inputs/whole_imgs', help='Input folder')
parser.add_argument('--suffix', type=str, default=None, help='Suffix of the restored faces')
parser.add_argument('--only_center_face', action='store_true', help='Only restore the center face')
parser.add_argument('--aligned', action='store_true', help='Input are aligned faces')
parser.add_argument('--paste_back', action='store_false', help='Paste the restored faces back to images')
parser.add_argument('--save_root', type=str, default='results', help='Path to save root')
parser.add_argument(
'--ext',
type=str,
default='auto',
help='Image extension. Options: auto | jpg | png, auto means using the same extension as inputs')
args = parser.parse_args()
args = parser.parse_args()
if args.test_path.endswith('/'):
args.test_path = args.test_path[:-1]
os.makedirs(args.save_root, exist_ok=True)
# background upsampler
if args.bg_upsampler == 'realesrgan':
if not torch.cuda.is_available(): # CPU
import warnings
warnings.warn('The unoptimized RealESRGAN is very slow on CPU. We do not use it. '
'If you really want to use it, please modify the corresponding codes.')
bg_upsampler = None
else:
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
bg_upsampler = RealESRGANer(
scale=2,
model_path='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth',
model=model,
tile=args.bg_tile,
tile_pad=10,
pre_pad=0,
half=True) # need to set False in CPU mode
else:
bg_upsampler = None
# set up GFPGAN restorer
restorer = GFPGANer(
model_path=args.model_path,
upscale=args.upscale,
arch=args.arch,
channel_multiplier=args.channel,
bg_upsampler=bg_upsampler)
img_list = sorted(glob.glob(os.path.join(args.test_path, '*')))
for img_path in img_list:
# read image
img_name = os.path.basename(img_path)
print(f'Processing {img_name} ...')
basename, ext = os.path.splitext(img_name)
input_img = cv2.imread(img_path, cv2.IMREAD_COLOR)
# restore faces and background if necessary
cropped_faces, restored_faces, restored_img = restorer.enhance(
input_img, has_aligned=args.aligned, only_center_face=args.only_center_face, paste_back=args.paste_back)
# save faces
for idx, (cropped_face, restored_face) in enumerate(zip(cropped_faces, restored_faces)):
# save cropped face
save_crop_path = os.path.join(args.save_root, 'cropped_faces', f'{basename}_{idx:02d}.png')
imwrite(cropped_face, save_crop_path)
# save restored face
if args.suffix is not None:
save_face_name = f'{basename}_{idx:02d}_{args.suffix}.png'
else:
save_face_name = f'{basename}_{idx:02d}.png'
save_restore_path = os.path.join(args.save_root, 'restored_faces', save_face_name)
imwrite(restored_face, save_restore_path)
# save comparison image
cmp_img = np.concatenate((cropped_face, restored_face), axis=1)
imwrite(cmp_img, os.path.join(args.save_root, 'cmp', f'{basename}_{idx:02d}.png'))
# save restored img
if restored_img is not None:
if args.ext == 'auto':
extension = ext[1:]
else:
extension = args.ext
if args.suffix is not None:
save_restore_path = os.path.join(args.save_root, 'restored_imgs',
f'{basename}_{args.suffix}.{extension}')
else:
save_restore_path = os.path.join(args.save_root, 'restored_imgs', f'{basename}.{extension}')
imwrite(restored_img, save_restore_path)
print(f'Results are in the [{args.save_root}] folder.')
if __name__ == '__main__':
main()
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/nywsr/GFPGAN.git
git@gitee.com:nywsr/GFPGAN.git
nywsr
GFPGAN
GFPGAN
master

搜索帮助