1 Star 0 Fork 2

母翟龙/UER-py

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
run_dbqa.py 8.50 KB
一键复制 编辑 原始数据 按行查看 历史
zhezhaoa 提交于 2021-01-08 17:42 . better code style.
"""
This script provides an exmaple to wrap UER-py for document-based question answering.
"""
import random
import argparse
import torch
from uer.layers import *
from uer.encoders import *
from uer.utils.constants import *
from uer.utils import *
from uer.utils.optimizers import *
from uer.utils.config import load_hyperparam
from uer.utils.seed import set_seed
from uer.model_saver import save_model
from uer.opts import finetune_opts
from run_classifier import Classifier, count_labels_num, build_optimizer, batch_loader, train_model, load_or_initialize_parameters
def read_dataset(args, path):
dataset, columns = [], {}
with open(path, mode="r", encoding="utf-8") as f:
for line_id, line in enumerate(f):
if line_id == 0:
for i, column_name in enumerate(line.strip().split("\t")):
columns[column_name] = i
continue
line = line.strip().split("\t")
qid = int(line[columns["qid"]])
tgt = int(line[columns["label"]])
text_a, text_b = line[columns["text_a"]], line[columns["text_b"]]
src_a = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text_a) + [SEP_TOKEN])
src_b = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_b) + [SEP_TOKEN])
src = src_a + src_b
seg = [1] * len(src_a) + [2] * len(src_b)
if len(src) > args.seq_length:
src = src[: args.seq_length]
seg = seg[: args.seq_length]
while len(src) < args.seq_length:
src.append(0)
seg.append(0)
dataset.append((src, tgt, seg, qid))
return dataset
def evaluate(args, dataset):
src = torch.LongTensor([sample[0] for sample in dataset])
tgt = torch.LongTensor([sample[1] for sample in dataset])
seg = torch.LongTensor([sample[2] for sample in dataset])
batch_size = args.batch_size
instances_num = src.size()[0]
args.model.eval()
for i, (src_batch, tgt_batch, seg_batch, _) in enumerate(batch_loader(batch_size, src, tgt, seg)):
src_batch = src_batch.to(args.device)
tgt_batch = tgt_batch.to(args.device)
seg_batch = seg_batch.to(args.device)
with torch.no_grad():
loss, logits = args.model(src_batch, tgt_batch, seg_batch)
if i == 0:
logits_all = logits
if i >= 1:
logits_all = torch.cat((logits_all, logits), 0)
# To calculate MRR, the results are grouped by qid.
dataset_groupby_qid, correct_answer_orders, scores = [], [], []
for i in range(len(dataset)):
label = dataset[i][1]
if i == 0:
qid = dataset[i][3]
# Order of the current sentence in the document.
current_order = 0
scores.append(float(logits_all[i][1].item()))
if label == 1:
# Occasionally, more than one sentences in a document contain answers.
correct_answer_orders.append(current_order)
current_order += 1
continue
if qid == dataset[i][3]:
scores.append(float(logits_all[i][1].item()))
if label == 1:
correct_answer_orders.append(current_order)
current_order += 1
else:
# For each question, we record which sentences contain answers
# and the scores of all sentences in the document.
dataset_groupby_qid.append((qid, correct_answer_orders, scores))
correct_answer_orders, scores, current_order = [], [], 0
qid = dataset[i][3]
scores.append(float(logits_all[i][1].item()))
if label == 1:
correct_answer_orders.append(current_order)
current_order += 1
dataset_groupby_qid.append((qid, correct_answer_orders, scores))
reciprocal_rank = []
for qid, correct_answer_orders, scores in dataset_groupby_qid:
if len(correct_answer_orders) == 1:
sorted_scores = sorted(scores, reverse=True)
for j in range(len(sorted_scores)):
if sorted_scores[j] == scores[correct_answer_orders[0]]:
reciprocal_rank.append(1 / (j + 1))
else:
current_rank = len(scores)
sorted_scores = sorted(scores, reverse=True)
for i in range(len(correct_answer_orders)):
for j in range(len(scores)):
if sorted_scores[j] == scores[correct_answer_orders[i]] and j < current_rank:
current_rank = j
reciprocal_rank.append(1 / (current_rank + 1))
MRR = sum(reciprocal_rank) / len(reciprocal_rank)
print("Mean Reciprocal Rank: {:.4f}".format(MRR))
return MRR
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
finetune_opts(parser)
parser.add_argument("--pooling", choices=["mean", "max", "first", "last"], default="first",
help="Pooling type.")
parser.add_argument("--tokenizer", choices=["bert", "char", "space"], default="bert",
help="Specify the tokenizer."
"Original Google BERT uses bert tokenizer on Chinese corpus."
"Char tokenizer segments sentences into characters."
"Space tokenizer segments sentences into words according to space."
)
parser.add_argument("--soft_targets", action='store_true',
help="Train model with logits.")
parser.add_argument("--soft_alpha", type=float, default=0.5,
help="Weight of the soft targets loss.")
args = parser.parse_args()
# Load the hyperparameters from the config file.
args = load_hyperparam(args)
set_seed(args.seed)
# Count the number of labels.
args.labels_num = count_labels_num(args.train_path)
# Build tokenizer.
args.tokenizer = str2tokenizer[args.tokenizer](args)
# Build classification model.
model = Classifier(args)
# Load or initialize parameters.
load_or_initialize_parameters(args, model)
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(args.device)
# Training phase.
trainset = read_dataset(args, args.train_path)
random.shuffle(trainset)
instances_num = len(trainset)
batch_size = args.batch_size
src = torch.LongTensor([example[0] for example in trainset])
tgt = torch.LongTensor([example[1] for example in trainset])
seg = torch.LongTensor([example[2] for example in trainset])
args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1
print("Batch size: ", batch_size)
print("The number of training instances:", instances_num)
optimizer, scheduler = build_optimizer(args, model)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer,opt_level = args.fp16_opt_level)
args.amp = amp
if torch.cuda.device_count() > 1:
print("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
model = torch.nn.DataParallel(model)
args.model = model
total_loss, result, best_result = 0.0, 0.0, 0.0
print("Start training.")
for epoch in range(1, args.epochs_num + 1):
model.train()
for i, (src_batch, tgt_batch, seg_batch, _) in enumerate(batch_loader(batch_size, src, tgt, seg)):
loss = train_model(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch)
total_loss += loss.item()
if (i + 1) % args.report_steps == 0:
print("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i + 1, total_loss / args.report_steps))
total_loss = 0.0
result = evaluate(args, read_dataset(args, args.dev_path))
if result > best_result:
best_result = result
save_model(model, args.output_model_path)
# Evaluation phase.
if args.test_path is not None:
print("Test set evaluation.")
if torch.cuda.device_count() > 1:
model.module.load_state_dict(torch.load(args.output_model_path))
else:
model.load_state_dict(torch.load(args.output_model_path))
evaluate(args, read_dataset(args, args.test_path))
if __name__ == "__main__":
main()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/null_413_8597/UER-py.git
git@gitee.com:null_413_8597/UER-py.git
null_413_8597
UER-py
UER-py
master

搜索帮助