1 Star 0 Fork 2

母翟龙/UER-py

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
.travis.yml 6.92 KB
一键复制 编辑 原始数据 按行查看 历史
zhezhaoa 提交于 2021-02-17 01:03 . update generate_lm.
language: python
sudo: enabled
python:
- "3.6"
env:
global:
- TRAVIS=true
install:
- pip install -r requirements.txt
script:
python preprocess.py --corpus_path corpora/book_review_bert.txt --vocab_path models/google_zh_vocab.txt --dataset_path bert_dataset.pt --processes_num 8 --target bert --seq_length 64
python pretrain.py --dataset_path bert_dataset.pt --vocab_path models/google_zh_vocab.txt --output_model_path models/bert_model.bin --config_path models/bert/mini_config.json --embedding word_pos_seg --encoder transformer --mask fully_visible --target bert --total_steps 10 --save_checkpoint_steps 10 --report_steps 2 --batch_size 2
mv models/bert_model.bin-10 models/bert_model.bin
python preprocess.py --corpus_path corpora/book_review.txt --vocab_path models/google_zh_vocab.txt --dataset_path roberta_dataset.pt --processes_num 8 --target mlm --seq_length 64 --dynamic_masking
python pretrain.py --dataset_path roberta_dataset.pt --vocab_path models/google_zh_vocab.txt --output_model_path models/roberta_model.bin --config_path models/bert/mini_config.json --embedding word_pos_seg --encoder transformer --mask fully_visible --target mlm --total_steps 10 --save_checkpoint_steps 10 --report_steps 2 --batch_size 2
mv models/roberta_model.bin-10 models/roberta_model.bin
python preprocess.py --corpus_path corpora/book_review_bert.txt --vocab_path models/google_zh_vocab.txt --dataset_path albert_dataset.pt --processes_num 8 --target albert --seq_length 64
python pretrain.py --dataset_path albert_dataset.pt --vocab_path models/google_zh_vocab.txt --output_model_path models/albert_model.bin --config_path models/albert/base_config.json --embedding word_pos_seg --encoder transformer --mask fully_visible --factorized_embedding_parameterization --parameter_sharing --target albert --total_steps 10 --save_checkpoint_steps 10 --report_steps 2 --batch_size 2
mv models/albert_model.bin-10 models/albert_model.bin
python preprocess.py --corpus_path corpora/book_review.txt --vocab_path models/google_zh_vocab.txt --dataset_path lm_dataset.pt --processes_num 8 --target lm --seq_length 64
python pretrain.py --dataset_path lm_dataset.pt --vocab_path models/google_zh_vocab.txt --output_model_path models/gpt_model.bin --config_path models/bert/mini_config.json --embedding word_pos --encoder transformer --mask causal --target lm --total_steps 10 --save_checkpoint_steps 10 --report_steps 2 --batch_size 2
mv models/gpt_model.bin-10 models/gpt_model.bin
python preprocess.py --corpus_path corpora/book_review_bert.txt --vocab_path models/google_zh_vocab.txt --dataset_path spanbert_dataset.pt --processes_num 8 --target bert --seq_length 64 --span_masking
python pretrain.py --dataset_path spanbert_dataset.pt --vocab_path models/google_zh_vocab.txt --output_model_path models/spanbert_model.bin --config_path models/bert/mini_config.json --embedding word_pos_seg --encoder transformer --mask fully_visible --target bert --total_steps 10 --save_checkpoint_steps 10 --report_steps 2 --batch_size 2
mv models/spanbert_model.bin-10 models/spanbert_model.bin
python preprocess.py --corpus_path corpora/book_review_cls.txt --vocab_path models/google_zh_vocab.txt --dataset_path cls_dataset.pt --processes_num 8 --target cls --seq_length 64
python pretrain.py --dataset_path cls_dataset.pt --vocab_path models/google_zh_vocab.txt --output_model_path models/cls_model.bin --config_path models/bert/mini_config.json --embedding word_pos_seg --encoder transformer --mask fully_visible --target cls --total_steps 10 --save_checkpoint_steps 10 --report_steps 2 --batch_size 2 --labels_num 2
mv models/cls_model.bin-10 models/cls_model.bin
python run_classifier.py --pretrained_model_path models/bert_model.bin --vocab_path models/google_zh_vocab.txt --config_path models/bert/mini_config.json --output_model_path models/classifier_model.bin --train_path datasets/test_data/chnsenticorp_test/train.tsv --dev_path datasets/test_data/chnsenticorp_test/dev.tsv --epochs_num 3 --batch_size 2 --embedding word_pos_seg --encoder transformer --mask fully_visible
python inference/run_classifier_infer.py --load_model_path models/classifier_model.bin --vocab_path models/google_zh_vocab.txt --config_path models/bert/mini_config.json --test_path datasets/test_data/chnsenticorp_test/test_nolabel.tsv --prediction_path datasets/test_data/chnsenticorp_test/prediction.tsv --embedding word_pos_seg --encoder transformer --mask fully_visible --labels_num 2
python run_classifier.py --pretrained_model_path models/albert_model.bin --vocab_path models/google_zh_vocab.txt --config_path models/albert/base_config.json --output_model_path models/classifier_model.bin --train_path datasets/test_data/chnsenticorp_test/train.tsv --dev_path datasets/test_data/chnsenticorp_test/dev.tsv --learning_rate 4e-5 --epochs_num 3 --batch_size 2 --embedding word_pos_seg --encoder transformer --mask fully_visible --factorized_embedding_parameterization --parameter_sharing
python run_mt_classifier.py --pretrained_model_path models/bert_model.bin --vocab_path models/google_zh_vocab.txt --config_path models/bert/mini_config.json --dataset_path_list datasets/test_data/douban_test/ datasets/test_data/chnsenticorp_test/ --epochs_num 1 --batch_size 2 --embedding word_pos_seg --encoder transformer --mask fully_visible
python run_ner.py --pretrained_model_path models/bert_model.bin --vocab_path models/google_zh_vocab.txt --config_path models/bert/mini_config.json --output_model_path models/ner_model.bin --train_path datasets/test_data/msra_ner_test/train.tsv --dev_path datasets/test_data/msra_ner_test/dev.tsv --label2id_path datasets/msra_ner/label2id.json --epochs_num 2 --batch_size 2 --embedding word_pos_seg --encoder transformer --mask fully_visible
python inference/run_ner_infer.py --load_model_path models/ner_model.bin --vocab_path models/google_zh_vocab.txt --config_path models/bert/mini_config.json --test_path datasets/test_data/msra_ner_test/test_nolabel.tsv --prediction_path datasets/test_data/msra_ner_test/prediction.tsv --label2id_path datasets/msra_ner/label2id.json --embedding word_pos_seg --encoder transformer --mask fully_visible
python run_cmrc.py --pretrained_model_path models/bert_model.bin --vocab_path models/google_zh_vocab.txt --config_path models/bert/mini_config.json --output_model_path models/cmrc_model.bin --train_path datasets/test_data/cmrc_test/train.json --dev_path datasets/test_data/cmrc_test/dev.json --epochs_num 2 --batch_size 2 --embedding word_pos_seg --encoder transformer --mask fully_visible --seq_length 128
python inference/run_cmrc_infer.py --load_model_path models/cmrc_model.bin --vocab_path models/google_zh_vocab.txt --config_path models/bert/mini_config.json --test_path datasets/test_data/cmrc_test/test.json --prediction_path datasets/test_data/cmrc_test/prediction.json --embedding word_pos_seg --encoder transformer --mask fully_visible --seq_length 128
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/null_413_8597/UER-py.git
git@gitee.com:null_413_8597/UER-py.git
null_413_8597
UER-py
UER-py
master

搜索帮助