代码拉取完成,页面将自动刷新
/**
* This file contains source code adapted from Snap.svg (licensed Apache-2.0).
*
* @see https://github.com/adobe-webplatform/Snap.svg/blob/master/src/path.js
*/
/* eslint no-fallthrough: "off" */
var p2s = /,?([a-z]),?/gi,
toFloat = parseFloat,
math = Math,
PI = math.PI,
mmin = math.min,
mmax = math.max,
pow = math.pow,
abs = math.abs,
pathCommand = /([a-z])[\s,]*((-?\d*\.?\d*(?:e[-+]?\d+)?[\s]*,?[\s]*)+)/ig,
pathValues = /(-?\d*\.?\d*(?:e[-+]?\d+)?)[\s]*,?[\s]*/ig;
var isArray = Array.isArray || function(o) { return o instanceof Array; };
function hasProperty(obj, property) {
return Object.prototype.hasOwnProperty.call(obj, property);
}
function clone(obj) {
if (typeof obj == 'function' || Object(obj) !== obj) {
return obj;
}
var res = new obj.constructor;
for (var key in obj) {
if (hasProperty(obj, key)) {
res[key] = clone(obj[key]);
}
}
return res;
}
function repush(array, item) {
for (var i = 0, ii = array.length; i < ii; i++) if (array[i] === item) {
return array.push(array.splice(i, 1)[0]);
}
}
function cacher(f) {
function newf() {
var arg = Array.prototype.slice.call(arguments, 0),
args = arg.join('\u2400'),
cache = newf.cache = newf.cache || {},
count = newf.count = newf.count || [];
if (hasProperty(cache, args)) {
repush(count, args);
return cache[args];
}
count.length >= 1e3 && delete cache[count.shift()];
count.push(args);
cache[args] = f(...arguments);
return cache[args];
}
return newf;
}
function parsePathString(pathString) {
if (!pathString) {
return null;
}
var pth = paths(pathString);
if (pth.arr) {
return clone(pth.arr);
}
var paramCounts = { a: 7, c: 6, h: 1, l: 2, m: 2, q: 4, s: 4, t: 2, v: 1, z: 0 },
data = [];
if (isArray(pathString) && isArray(pathString[0])) { // rough assumption
data = clone(pathString);
}
if (!data.length) {
String(pathString).replace(pathCommand, function(a, b, c) {
var params = [],
name = b.toLowerCase();
c.replace(pathValues, function(a, b) {
b && params.push(+b);
});
if (name == 'm' && params.length > 2) {
data.push([ b, ...params.splice(0, 2) ]);
name = 'l';
b = b == 'm' ? 'l' : 'L';
}
while (params.length >= paramCounts[name]) {
data.push([ b, ...params.splice(0, paramCounts[name]) ]);
if (!paramCounts[name]) {
break;
}
}
});
}
data.toString = paths.toString;
pth.arr = clone(data);
return data;
}
function paths(ps) {
var p = paths.ps = paths.ps || {};
if (p[ps]) {
p[ps].sleep = 100;
} else {
p[ps] = {
sleep: 100
};
}
setTimeout(function() {
for (var key in p) {
if (hasProperty(p, key) && key != ps) {
p[key].sleep--;
!p[key].sleep && delete p[key];
}
}
});
return p[ps];
}
function rectBBox(x, y, width, height) {
if (arguments.length === 1) {
y = x.y;
width = x.width;
height = x.height;
x = x.x;
}
return {
x: x,
y: y,
width: width,
height: height,
x2: x + width,
y2: y + height
};
}
function pathToString() {
return this.join(',').replace(p2s, '$1');
}
function pathClone(pathArray) {
var res = clone(pathArray);
res.toString = pathToString;
return res;
}
function findDotsAtSegment(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, t) {
var t1 = 1 - t,
t13 = pow(t1, 3),
t12 = pow(t1, 2),
t2 = t * t,
t3 = t2 * t,
x = t13 * p1x + t12 * 3 * t * c1x + t1 * 3 * t * t * c2x + t3 * p2x,
y = t13 * p1y + t12 * 3 * t * c1y + t1 * 3 * t * t * c2y + t3 * p2y;
return {
x: fixError(x),
y: fixError(y)
};
}
function bezierBBox(points) {
var bbox = curveBBox(...points);
return rectBBox(
bbox.x0,
bbox.y0,
bbox.x1 - bbox.x0,
bbox.y1 - bbox.y0
);
}
function isPointInsideBBox(bbox, x, y) {
return x >= bbox.x &&
x <= bbox.x + bbox.width &&
y >= bbox.y &&
y <= bbox.y + bbox.height;
}
function isBBoxIntersect(bbox1, bbox2) {
bbox1 = rectBBox(bbox1);
bbox2 = rectBBox(bbox2);
return isPointInsideBBox(bbox2, bbox1.x, bbox1.y)
|| isPointInsideBBox(bbox2, bbox1.x2, bbox1.y)
|| isPointInsideBBox(bbox2, bbox1.x, bbox1.y2)
|| isPointInsideBBox(bbox2, bbox1.x2, bbox1.y2)
|| isPointInsideBBox(bbox1, bbox2.x, bbox2.y)
|| isPointInsideBBox(bbox1, bbox2.x2, bbox2.y)
|| isPointInsideBBox(bbox1, bbox2.x, bbox2.y2)
|| isPointInsideBBox(bbox1, bbox2.x2, bbox2.y2)
|| (bbox1.x < bbox2.x2 && bbox1.x > bbox2.x
|| bbox2.x < bbox1.x2 && bbox2.x > bbox1.x)
&& (bbox1.y < bbox2.y2 && bbox1.y > bbox2.y
|| bbox2.y < bbox1.y2 && bbox2.y > bbox1.y);
}
function base3(t, p1, p2, p3, p4) {
var t1 = -3 * p1 + 9 * p2 - 9 * p3 + 3 * p4,
t2 = t * t1 + 6 * p1 - 12 * p2 + 6 * p3;
return t * t2 - 3 * p1 + 3 * p2;
}
function bezlen(x1, y1, x2, y2, x3, y3, x4, y4, z) {
if (z == null) {
z = 1;
}
z = z > 1 ? 1 : z < 0 ? 0 : z;
var z2 = z / 2,
n = 12,
Tvalues = [ -.1252,.1252,-.3678,.3678,-.5873,.5873,-.7699,.7699,-.9041,.9041,-.9816,.9816 ],
Cvalues = [ 0.2491,0.2491,0.2335,0.2335,0.2032,0.2032,0.1601,0.1601,0.1069,0.1069,0.0472,0.0472 ],
sum = 0;
for (var i = 0; i < n; i++) {
var ct = z2 * Tvalues[i] + z2,
xbase = base3(ct, x1, x2, x3, x4),
ybase = base3(ct, y1, y2, y3, y4),
comb = xbase * xbase + ybase * ybase;
sum += Cvalues[i] * math.sqrt(comb);
}
return z2 * sum;
}
function intersectLines(x1, y1, x2, y2, x3, y3, x4, y4) {
if (
mmax(x1, x2) < mmin(x3, x4) ||
mmin(x1, x2) > mmax(x3, x4) ||
mmax(y1, y2) < mmin(y3, y4) ||
mmin(y1, y2) > mmax(y3, y4)
) {
return;
}
var nx = (x1 * y2 - y1 * x2) * (x3 - x4) - (x1 - x2) * (x3 * y4 - y3 * x4),
ny = (x1 * y2 - y1 * x2) * (y3 - y4) - (y1 - y2) * (x3 * y4 - y3 * x4),
denominator = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4);
if (!denominator) {
return;
}
var px = fixError(nx / denominator),
py = fixError(ny / denominator),
px2 = +px.toFixed(2),
py2 = +py.toFixed(2);
if (
px2 < +mmin(x1, x2).toFixed(2) ||
px2 > +mmax(x1, x2).toFixed(2) ||
px2 < +mmin(x3, x4).toFixed(2) ||
px2 > +mmax(x3, x4).toFixed(2) ||
py2 < +mmin(y1, y2).toFixed(2) ||
py2 > +mmax(y1, y2).toFixed(2) ||
py2 < +mmin(y3, y4).toFixed(2) ||
py2 > +mmax(y3, y4).toFixed(2)
) {
return;
}
return { x: px, y: py };
}
function fixError(number) {
return Math.round(number * 100000000000) / 100000000000;
}
function findBezierIntersections(bez1, bez2, justCount) {
var bbox1 = bezierBBox(bez1),
bbox2 = bezierBBox(bez2);
if (!isBBoxIntersect(bbox1, bbox2)) {
return justCount ? 0 : [];
}
// As an optimization, lines will have only 1 segment
var l1 = bezlen(...bez1),
l2 = bezlen(...bez2),
n1 = isLine(bez1) ? 1 : ~~(l1 / 5) || 1,
n2 = isLine(bez2) ? 1 : ~~(l2 / 5) || 1,
dots1 = [],
dots2 = [],
xy = {},
res = justCount ? 0 : [];
for (var i = 0; i < n1 + 1; i++) {
var p = findDotsAtSegment(...bez1, i / n1);
dots1.push({ x: p.x, y: p.y, t: i / n1 });
}
for (i = 0; i < n2 + 1; i++) {
p = findDotsAtSegment(...bez2, i / n2);
dots2.push({ x: p.x, y: p.y, t: i / n2 });
}
for (i = 0; i < n1; i++) {
for (var j = 0; j < n2; j++) {
var di = dots1[i],
di1 = dots1[i + 1],
dj = dots2[j],
dj1 = dots2[j + 1],
ci = abs(di1.x - di.x) < .01 ? 'y' : 'x',
cj = abs(dj1.x - dj.x) < .01 ? 'y' : 'x',
is = intersectLines(di.x, di.y, di1.x, di1.y, dj.x, dj.y, dj1.x, dj1.y),
key;
if (is) {
key = is.x.toFixed(9) + '#' + is.y.toFixed(9);
if (xy[key]) {
continue;
}
xy[key] = true;
var t1 = di.t + abs((is[ci] - di[ci]) / (di1[ci] - di[ci])) * (di1.t - di.t),
t2 = dj.t + abs((is[cj] - dj[cj]) / (dj1[cj] - dj[cj])) * (dj1.t - dj.t);
if (t1 >= 0 && t1 <= 1 && t2 >= 0 && t2 <= 1) {
if (justCount) {
res++;
} else {
res.push({
x: is.x,
y: is.y,
t1: t1,
t2: t2
});
}
}
}
}
}
return res;
}
/**
* Find or counts the intersections between two SVG paths.
*
* Returns a number in counting mode and a list of intersections otherwise.
*
* A single intersection entry contains the intersection coordinates (x, y)
* as well as additional information regarding the intersecting segments
* on each path (segment1, segment2) and the relative location of the
* intersection on these segments (t1, t2).
*
* The path may be an SVG path string or a list of path components
* such as `[ [ 'M', 0, 10 ], [ 'L', 20, 0 ] ]`.
*
* @example
*
* var intersections = findPathIntersections(
* 'M0,0L100,100',
* [ [ 'M', 0, 100 ], [ 'L', 100, 0 ] ]
* );
*
* // intersections = [
* // { x: 50, y: 50, segment1: 1, segment2: 1, t1: 0.5, t2: 0.5 }
* // ]
*
* @param {String|Array<PathDef>} path1
* @param {String|Array<PathDef>} path2
* @param {Boolean} [justCount=false]
*
* @return {Array<Intersection>|Number}
*/
export default function findPathIntersections(path1, path2, justCount) {
path1 = pathToCurve(path1);
path2 = pathToCurve(path2);
var x1, y1, x2, y2, x1m, y1m, x2m, y2m, bez1, bez2,
res = justCount ? 0 : [];
for (var i = 0, ii = path1.length; i < ii; i++) {
var pi = path1[i];
if (pi[0] == 'M') {
x1 = x1m = pi[1];
y1 = y1m = pi[2];
} else {
if (pi[0] == 'C') {
bez1 = [ x1, y1, ...pi.slice(1) ];
x1 = bez1[6];
y1 = bez1[7];
} else {
bez1 = [ x1, y1, x1, y1, x1m, y1m, x1m, y1m ];
x1 = x1m;
y1 = y1m;
}
for (var j = 0, jj = path2.length; j < jj; j++) {
var pj = path2[j];
if (pj[0] == 'M') {
x2 = x2m = pj[1];
y2 = y2m = pj[2];
} else {
if (pj[0] == 'C') {
bez2 = [ x2, y2, ...pj.slice(1) ];
x2 = bez2[6];
y2 = bez2[7];
} else {
bez2 = [ x2, y2, x2, y2, x2m, y2m, x2m, y2m ];
x2 = x2m;
y2 = y2m;
}
var intr = findBezierIntersections(bez1, bez2, justCount);
if (justCount) {
res += intr;
} else {
for (var k = 0, kk = intr.length; k < kk; k++) {
intr[k].segment1 = i;
intr[k].segment2 = j;
intr[k].bez1 = bez1;
intr[k].bez2 = bez2;
}
res = res.concat(intr);
}
}
}
}
}
return res;
}
function pathToAbsolute(pathArray) {
var pth = paths(pathArray);
if (pth.abs) {
return pathClone(pth.abs);
}
if (!isArray(pathArray) || !isArray(pathArray && pathArray[0])) { // rough assumption
pathArray = parsePathString(pathArray);
}
if (!pathArray || !pathArray.length) {
return [ [ 'M', 0, 0 ] ];
}
var res = [],
x = 0,
y = 0,
mx = 0,
my = 0,
start = 0,
pa0;
if (pathArray[0][0] == 'M') {
x = +pathArray[0][1];
y = +pathArray[0][2];
mx = x;
my = y;
start++;
res[0] = [ 'M', x, y ];
}
for (var r, pa, i = start, ii = pathArray.length; i < ii; i++) {
res.push(r = []);
pa = pathArray[i];
pa0 = pa[0];
if (pa0 != pa0.toUpperCase()) {
r[0] = pa0.toUpperCase();
switch (r[0]) {
case 'A':
r[1] = pa[1];
r[2] = pa[2];
r[3] = pa[3];
r[4] = pa[4];
r[5] = pa[5];
r[6] = +pa[6] + x;
r[7] = +pa[7] + y;
break;
case 'V':
r[1] = +pa[1] + y;
break;
case 'H':
r[1] = +pa[1] + x;
break;
case 'M':
mx = +pa[1] + x;
my = +pa[2] + y;
default:
for (var j = 1, jj = pa.length; j < jj; j++) {
r[j] = +pa[j] + ((j % 2) ? x : y);
}
}
} else {
for (var k = 0, kk = pa.length; k < kk; k++) {
r[k] = pa[k];
}
}
pa0 = pa0.toUpperCase();
switch (r[0]) {
case 'Z':
x = +mx;
y = +my;
break;
case 'H':
x = r[1];
break;
case 'V':
y = r[1];
break;
case 'M':
mx = r[r.length - 2];
my = r[r.length - 1];
default:
x = r[r.length - 2];
y = r[r.length - 1];
}
}
res.toString = pathToString;
pth.abs = pathClone(res);
return res;
}
function isLine(bez) {
return (
bez[0] === bez[2] &&
bez[1] === bez[3] &&
bez[4] === bez[6] &&
bez[5] === bez[7]
);
}
function lineToCurve(x1, y1, x2, y2) {
return [
x1, y1, x2,
y2, x2, y2
];
}
function qubicToCurve(x1, y1, ax, ay, x2, y2) {
var _13 = 1 / 3,
_23 = 2 / 3;
return [
_13 * x1 + _23 * ax,
_13 * y1 + _23 * ay,
_13 * x2 + _23 * ax,
_13 * y2 + _23 * ay,
x2,
y2
];
}
function arcToCurve(x1, y1, rx, ry, angle, large_arc_flag, sweep_flag, x2, y2, recursive) {
// for more information of where this math came from visit:
// http://www.w3.org/TR/SVG11/implnote.html#ArcImplementationNotes
var _120 = PI * 120 / 180,
rad = PI / 180 * (+angle || 0),
res = [],
xy,
rotate = cacher(function(x, y, rad) {
var X = x * math.cos(rad) - y * math.sin(rad),
Y = x * math.sin(rad) + y * math.cos(rad);
return { x: X, y: Y };
});
if (!recursive) {
xy = rotate(x1, y1, -rad);
x1 = xy.x;
y1 = xy.y;
xy = rotate(x2, y2, -rad);
x2 = xy.x;
y2 = xy.y;
var x = (x1 - x2) / 2,
y = (y1 - y2) / 2;
var h = (x * x) / (rx * rx) + (y * y) / (ry * ry);
if (h > 1) {
h = math.sqrt(h);
rx = h * rx;
ry = h * ry;
}
var rx2 = rx * rx,
ry2 = ry * ry,
k = (large_arc_flag == sweep_flag ? -1 : 1) *
math.sqrt(abs((rx2 * ry2 - rx2 * y * y - ry2 * x * x) / (rx2 * y * y + ry2 * x * x))),
cx = k * rx * y / ry + (x1 + x2) / 2,
cy = k * -ry * x / rx + (y1 + y2) / 2,
f1 = math.asin(((y1 - cy) / ry).toFixed(9)),
f2 = math.asin(((y2 - cy) / ry).toFixed(9));
f1 = x1 < cx ? PI - f1 : f1;
f2 = x2 < cx ? PI - f2 : f2;
f1 < 0 && (f1 = PI * 2 + f1);
f2 < 0 && (f2 = PI * 2 + f2);
if (sweep_flag && f1 > f2) {
f1 = f1 - PI * 2;
}
if (!sweep_flag && f2 > f1) {
f2 = f2 - PI * 2;
}
} else {
f1 = recursive[0];
f2 = recursive[1];
cx = recursive[2];
cy = recursive[3];
}
var df = f2 - f1;
if (abs(df) > _120) {
var f2old = f2,
x2old = x2,
y2old = y2;
f2 = f1 + _120 * (sweep_flag && f2 > f1 ? 1 : -1);
x2 = cx + rx * math.cos(f2);
y2 = cy + ry * math.sin(f2);
res = arcToCurve(x2, y2, rx, ry, angle, 0, sweep_flag, x2old, y2old, [ f2, f2old, cx, cy ]);
}
df = f2 - f1;
var c1 = math.cos(f1),
s1 = math.sin(f1),
c2 = math.cos(f2),
s2 = math.sin(f2),
t = math.tan(df / 4),
hx = 4 / 3 * rx * t,
hy = 4 / 3 * ry * t,
m1 = [ x1, y1 ],
m2 = [ x1 + hx * s1, y1 - hy * c1 ],
m3 = [ x2 + hx * s2, y2 - hy * c2 ],
m4 = [ x2, y2 ];
m2[0] = 2 * m1[0] - m2[0];
m2[1] = 2 * m1[1] - m2[1];
if (recursive) {
return [ m2, m3, m4 ].concat(res);
} else {
res = [ m2, m3, m4 ].concat(res).join().split(',');
var newres = [];
for (var i = 0, ii = res.length; i < ii; i++) {
newres[i] = i % 2 ? rotate(res[i - 1], res[i], rad).y : rotate(res[i], res[i + 1], rad).x;
}
return newres;
}
}
// Returns bounding box of cubic bezier curve.
// Source: http://blog.hackers-cafe.net/2009/06/how-to-calculate-bezier-curves-bounding.html
// Original version: NISHIO Hirokazu
// Modifications: https://github.com/timo22345
function curveBBox(x0, y0, x1, y1, x2, y2, x3, y3) {
var tvalues = [],
bounds = [ [], [] ],
a, b, c, t, t1, t2, b2ac, sqrtb2ac;
for (var i = 0; i < 2; ++i) {
if (i == 0) {
b = 6 * x0 - 12 * x1 + 6 * x2;
a = -3 * x0 + 9 * x1 - 9 * x2 + 3 * x3;
c = 3 * x1 - 3 * x0;
} else {
b = 6 * y0 - 12 * y1 + 6 * y2;
a = -3 * y0 + 9 * y1 - 9 * y2 + 3 * y3;
c = 3 * y1 - 3 * y0;
}
if (abs(a) < 1e-12) {
if (abs(b) < 1e-12) {
continue;
}
t = -c / b;
if (0 < t && t < 1) {
tvalues.push(t);
}
continue;
}
b2ac = b * b - 4 * c * a;
sqrtb2ac = math.sqrt(b2ac);
if (b2ac < 0) {
continue;
}
t1 = (-b + sqrtb2ac) / (2 * a);
if (0 < t1 && t1 < 1) {
tvalues.push(t1);
}
t2 = (-b - sqrtb2ac) / (2 * a);
if (0 < t2 && t2 < 1) {
tvalues.push(t2);
}
}
var j = tvalues.length,
jlen = j,
mt;
while (j--) {
t = tvalues[j];
mt = 1 - t;
bounds[0][j] = (mt * mt * mt * x0) + (3 * mt * mt * t * x1) + (3 * mt * t * t * x2) + (t * t * t * x3);
bounds[1][j] = (mt * mt * mt * y0) + (3 * mt * mt * t * y1) + (3 * mt * t * t * y2) + (t * t * t * y3);
}
bounds[0][jlen] = x0;
bounds[1][jlen] = y0;
bounds[0][jlen + 1] = x3;
bounds[1][jlen + 1] = y3;
bounds[0].length = bounds[1].length = jlen + 2;
return {
x0: mmin(...bounds[0]),
y0: mmin(...bounds[1]),
x1: mmax(...bounds[0]),
y1: mmax(...bounds[1])
};
}
function pathToCurve(path) {
var pth = paths(path);
// return cached curve, if existing
if (pth.curve) {
return pathClone(pth.curve);
}
var curvedPath = pathToAbsolute(path),
attrs = { x: 0, y: 0, bx: 0, by: 0, X: 0, Y: 0, qx: null, qy: null },
processPath = function(path, d, pathCommand) {
var nx, ny;
if (!path) {
return [ 'C', d.x, d.y, d.x, d.y, d.x, d.y ];
}
!(path[0] in { T: 1, Q: 1 }) && (d.qx = d.qy = null);
switch (path[0]) {
case 'M':
d.X = path[1];
d.Y = path[2];
break;
case 'A':
path = [ 'C', ...arcToCurve(d.x, d.y, ...path.slice(1)) ];
break;
case 'S':
if (pathCommand == 'C' || pathCommand == 'S') {
// In 'S' case we have to take into account, if the previous command is C/S.
nx = d.x * 2 - d.bx;
// And reflect the previous
ny = d.y * 2 - d.by;
// command's control point relative to the current point.
}
else {
// or some else or nothing
nx = d.x;
ny = d.y;
}
path = [ 'C', nx, ny, ...path.slice(1) ];
break;
case 'T':
if (pathCommand == 'Q' || pathCommand == 'T') {
// In 'T' case we have to take into account, if the previous command is Q/T.
d.qx = d.x * 2 - d.qx;
// And make a reflection similar
d.qy = d.y * 2 - d.qy;
// to case 'S'.
}
else {
// or something else or nothing
d.qx = d.x;
d.qy = d.y;
}
path = [ 'C', ...qubicToCurve(d.x, d.y, d.qx, d.qy, path[1], path[2]) ];
break;
case 'Q':
d.qx = path[1];
d.qy = path[2];
path = [ 'C', ...qubicToCurve(d.x, d.y, path[1], path[2], path[3], path[4]) ];
break;
case 'L':
path = [ 'C', ...lineToCurve(d.x, d.y, path[1], path[2]) ];
break;
case 'H':
path = [ 'C', ...lineToCurve(d.x, d.y, path[1], d.y) ];
break;
case 'V':
path = [ 'C', ...lineToCurve(d.x, d.y, d.x, path[1]) ];
break;
case 'Z':
path = [ 'C', ...lineToCurve(d.x, d.y, d.X, d.Y) ];
break;
}
return path;
},
fixArc = function(pp, i) {
if (pp[i].length > 7) {
pp[i].shift();
var pi = pp[i];
while (pi.length) {
pathCommands[i] = 'A'; // if created multiple C:s, their original seg is saved
pp.splice(i++, 0, [ 'C', ...pi.splice(0, 6) ]);
}
pp.splice(i, 1);
ii = curvedPath.length;
}
},
pathCommands = [], // path commands of original path p
pfirst = '', // temporary holder for original path command
pathCommand = ''; // holder for previous path command of original path
for (var i = 0, ii = curvedPath.length; i < ii; i++) {
curvedPath[i] && (pfirst = curvedPath[i][0]); // save current path command
if (pfirst != 'C') // C is not saved yet, because it may be result of conversion
{
pathCommands[i] = pfirst; // Save current path command
i && (pathCommand = pathCommands[i - 1]); // Get previous path command pathCommand
}
curvedPath[i] = processPath(curvedPath[i], attrs, pathCommand); // Previous path command is inputted to processPath
if (pathCommands[i] != 'A' && pfirst == 'C') pathCommands[i] = 'C'; // A is the only command
// which may produce multiple C:s
// so we have to make sure that C is also C in original path
fixArc(curvedPath, i); // fixArc adds also the right amount of A:s to pathCommands
var seg = curvedPath[i],
seglen = seg.length;
attrs.x = seg[seglen - 2];
attrs.y = seg[seglen - 1];
attrs.bx = toFloat(seg[seglen - 4]) || attrs.x;
attrs.by = toFloat(seg[seglen - 3]) || attrs.y;
}
// cache curve
pth.curve = pathClone(curvedPath);
return curvedPath;
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。