代码拉取完成,页面将自动刷新
class GPT {
constructor(folder, type) {
this.folder = folder;
this.tokenizerType = type;
this.initialized = false;
this.device;
this.model;
this.tokenizer;
this.params;
this.minBufferOffset = 1;
this.defaultPrompt;
this.defaultTopK;
this.defaultTemperature;
this.defaultTokens;
this.externalBuffer;
this.unloadDeletionStack = [];
}
async initialize() {
if (this.initialized) return console.error("Model already initialized");
if (!navigator.gpu) throw new Error("WebGPU is not supported");
const adapter = await navigator.gpu.requestAdapter();
this.device = await adapter.requestDevice();
initializeOperations(this.device);
[this.model, this.params] = await this.loadModel(this.folder);
this.tokenizer = this.tokenizerType == "bpe" ? new GPT2Tokenizer() : new SimpleTokenizer();
await this.tokenizer.load();
if (this.tokenizerType == "bpe") {
this.defaultPrompt = `What is the answer to life, the universe, and everything?\n`;
this.defaultTopK = 3;
this.defaultTemperature = 1;
this.defaultTokens = 30;
} else {
this.defaultPrompt = `WILL:\nAh, how dare you challenge me?\nHave you forgotten I built WebGPT?\n`;
this.defaultTopK = 2;
this.defaultTemperature = 1;
this.defaultTokens = 80;
}
this.initialized = true;
console.log("Model initialized");
}
async *generate(prompt, max_new_tokens, top_k, temperature) {
if (!this.initialized) {
console.error("Model not loaded yet");
return;
}
// Buffer size (321644800) exceeds the max buffer size limit (268435456).
// - While calling [Device].CreateBuffer([BufferDescriptor]).
let history = this.tokenizer.encode(prompt);
console.log(`Prompt (${history.length} tokens):\n${prompt}`);
const warmupRuns = 3;
let totalTime = 0;
for (let i = 0; i < max_new_tokens; i++) {
const idx_cond = history.slice(-this.params.n_ctx);
const useAttCache = i !== 0 && history.length <= this.params.n_ctx;
const startTime = performance.now();
const logits = await this.run(idx_cond, useAttCache);
const endTime = performance.now();
// console.log(`\nIteration ${i + 1} of ${max_new_tokens}`);
const lapsedTime = endTime - startTime;
console.log(`Kernel execution time: ${lapsedTime} ms`);
i >= warmupRuns && (totalTime += lapsedTime);
const { topKIndices, topKProbs } = selectTopK(logits, top_k);
const probs = cpuSoftmax(topKProbs, temperature);
const idx_next = topKIndices[sampleFromDistribution(probs)];
history = history.concat(idx_next);
// console.log(`Output:\n${this.tokenizer.decode(history)}`);
// const totalProbs = cpuSoftmax(logits, temperature);
// const tokenProbsString = Array.from(totalProbs)
// .map((value, index) => ({ value, index }))
// .sort((a, b) => b.value - a.value)
// .slice(0, 8)
// .map((prob) => `{ ${this.tokenizer.decode([prob.index]).replace(/(\r\n|\n|\r)/gm, "newline")} } : ${prob.value.toPrecision(3)}`)
// .join(" | ");
// console.log("Top 8 token probs:", tokenProbsString);
yield this.tokenizer.decode([idx_next]);
}
console.log(`Average kernel execution time: ${totalTime / (max_new_tokens - warmupRuns)} ms`);
}
async run(idx) {
const { posEmbdBuffer, layer_buffers, normGammaBuffer, normBetaBuffer, embeddingsBuffers, deEmbeddingsBuffers } = this.model;
const { attention_scale, n_embd, n_head, head_size, n_layer, vocab_size, hidden_size, vocab_chunk_size, vocab_chunk_instances } = this.params;
const seq_length = idx.length;
// ---------------- Create Passes ---------------- //
// Note: These are re-initialized because everytime seq_length changes buffers are different sizes.
// Pipeline creation is major bottleneck to spin up speed! Also buffer re-use.
this.computePasses = [];
let intermediateBuffer;
let residualBuffer;
{
const { passes, resultBuffer } = EmbedBlock.newInstance(idx, seq_length, n_embd, vocab_chunk_size, embeddingsBuffers, posEmbdBuffer, ResidualBlock);
intermediateBuffer = resultBuffer;
residualBuffer = resultBuffer;
this.computePasses.push(...passes);
}
for (let i = 0; i < n_layer; i++) {
const buffers = layer_buffers[i];
{
const { passes, resultBuffer } = LayerNormBlock.newInstance(
seq_length,
n_embd,
intermediateBuffer,
buffers.normAttentionGammaBuffer,
buffers.normAttentionBetaBuffer
);
intermediateBuffer = resultBuffer;
this.computePasses.push(...passes);
}
{
const { passes, resultBuffer } = AttentionBlock.newFusedInstance(
seq_length,
n_embd,
attention_scale,
n_head,
head_size,
intermediateBuffer,
buffers.qkvWeightArray[0],
buffers.qkvBiasArray[0],
buffers.qkvWeightArray[1],
buffers.qkvBiasArray[1],
buffers.qkvWeightArray[2],
buffers.qkvBiasArray[2],
buffers.linearWeightsBuffer,
buffers.linearBiasBuffer,
FastMatMulBlock,
SoftmaxBlock
);
intermediateBuffer = resultBuffer;
this.computePasses.push(...passes);
}
{
const { passes, resultBuffer } = ResidualBlock.newInstance(seq_length, n_embd, intermediateBuffer, residualBuffer);
intermediateBuffer = resultBuffer;
residualBuffer = resultBuffer;
this.computePasses.push(...passes);
}
{
const { passes, resultBuffer } = LayerNormBlock.newInstance(
seq_length,
n_embd,
intermediateBuffer,
buffers.normLinearGammaBuffer,
buffers.normLinearBetaBuffer
);
intermediateBuffer = resultBuffer;
this.computePasses.push(...passes);
}
{
const { resultBuffer, passes } = FastMatMulBlock.newInstance(
seq_length,
hidden_size,
n_embd,
intermediateBuffer,
buffers.firstLayerWeightsBuffer,
buffers.firstLayerBiasBuffer
);
intermediateBuffer = resultBuffer;
this.computePasses.push(...passes);
}
{
const { resultBuffer, passes } = GeluBlock.newInstance(seq_length, hidden_size, intermediateBuffer);
intermediateBuffer = resultBuffer;
this.computePasses.push(...passes);
}
{
const { resultBuffer, passes } = FastMatMulBlock.newInstance(
seq_length,
n_embd,
hidden_size,
intermediateBuffer,
buffers.secondLayerWeightsBuffer,
buffers.secondLayerBiasBuffer
);
intermediateBuffer = resultBuffer;
this.computePasses.push(...passes);
}
{
const { passes, resultBuffer } = ResidualBlock.newInstance(seq_length, n_embd, intermediateBuffer, residualBuffer);
intermediateBuffer = resultBuffer;
residualBuffer = resultBuffer;
this.computePasses.push(...passes);
}
}
{
if (this.externalBuffer) {
this.computePasses.push({
flag: "copy",
src: intermediateBuffer,
srcOffset: 0,
dst: this.externalBuffer,
dstOffset: 0,
size: this.bufferSize(seq_length, n_embd),
});
}
}
{
const { passes, resultBuffer } = LayerNormBlock.newInstance(seq_length, n_embd, intermediateBuffer, normGammaBuffer, normBetaBuffer);
intermediateBuffer = resultBuffer;
this.computePasses.push(...passes);
}
{
const { passes, resultBuffer } = DeEmbedBlock.newInstance(
n_embd,
vocab_size,
vocab_chunk_size * vocab_chunk_instances,
seq_length,
vocab_chunk_size,
intermediateBuffer,
deEmbeddingsBuffers
);
intermediateBuffer = resultBuffer;
this.computePasses.push(...passes);
}
const resultBuffer = intermediateBuffer;
// ---------------- Compute Passes ----------------
const commandEncoder = this.device.createCommandEncoder();
for (const pass of this.computePasses) {
if (pass.flag === "compute") {
const passEncoder = commandEncoder.beginComputePass();
passEncoder.setPipeline(pass.pipeline);
for (let i = 0; i < pass.groups.length; i++) passEncoder.setBindGroup(i, pass.groups[i]);
passEncoder.dispatchWorkgroups(pass.workgroups.x, pass.workgroups.y);
passEncoder.end();
} else if (pass.flag === "copy") {
commandEncoder.copyBufferToBuffer(pass.src, pass.srcOffset, pass.dst, pass.dstOffset, pass.size);
}
}
this.device.queue.submit([commandEncoder.finish()]);
// ---------------- Read Results ----------------
await resultBuffer.mapAsync(GPUMapMode.READ);
const output = resultBuffer.getMappedRange();
const outputArray = new Float32Array(output).slice(0); // Copy the array, otherwise it'll be destroyed.
clearOperationCache();
return outputArray;
}
async loadModel(folder) {
if (this.initialized) return console.error("Model already loaded");
console.log("Loading model from folder:", folder);
const weightsFolder = `weights/${folder}/`;
const params = await this.loadParameters(weightsFolder);
const { embeddingsBuffers, deEmbeddingsBuffers } = await this.loadEmbeddings(params, weightsFolder);
const { posEmbdBuffer } = await this.loadPositionalEmbeddings(params, weightsFolder);
const layer_buffers = await this.loadLayers(params, weightsFolder);
console.log("Loading final layer norm...");
const { normGammaBuffer, normBetaBuffer } = await this.loadFinalLayerNorm(params, weightsFolder);
const output = { layer_buffers, embeddingsBuffers, deEmbeddingsBuffers, posEmbdBuffer, normGammaBuffer, normBetaBuffer };
console.log("Finished loading model.", output, params);
return [output, params];
}
async loadParameters(weightsFolder) {
console.log("Loading params...");
const params = await (await fetch(`${weightsFolder}/params_gpt.json`)).json();
// Did you enable GitHub LFS? Won't work without it.
if (params.n_embd % 4 !== 0) throw new Error("Model load failed: n_embd must be divisible by 4.");
if (params.n_embd % params.n_head !== 0) throw new Error("Model load failed: n_embd must be divisible by n_head.");
// I'm unsure if this is a reasonable requirement here. At worst, I can figure out some padding method.
if ((params.n_embd / params.n_head) % 4 !== 0) throw new Error("Model load failed: n_embd / n_head must be divisible by 4.");
const tokenParam = this.bufferSize(params.vocab_size, params.n_embd);
let minSplits = Math.ceil(tokenParam / this.device.limits.maxStorageBufferBindingSize);
function vocabChunkSizeCalc(vocab_size, n_embd, splits, maxStorageBufferBindingSize) {
// Possibly could be better? Needs actual benchmarking to know what approach is best.
const optimisticSize = Math.ceil(vocab_size / splits / 4) * 4 * n_embd;
const pessimiticSize = Math.floor(vocab_size / splits / 4) * 4 * n_embd;
let vocab_chunk_size = optimisticSize;
if (optimisticSize > maxStorageBufferBindingSize) {
vocab_chunk_size = pessimiticSize;
if (pessimiticSize * splits < tokenParam) {
return vocabChunkSizeCalc(vocab_size, n_embd, splits + 1, maxStorageBufferBindingSize);
}
}
return { vocab_chunk_size: vocab_chunk_size / n_embd, splits };
}
const { vocab_chunk_size, splits } = vocabChunkSizeCalc(params.vocab_size, params.n_embd, minSplits, this.device.limits.maxStorageBufferBindingSize);
if (splits > minSplits) console.warn(`Non-optimal number of vocab splits. Optimal: ${minSplits}, Selected: ${splits}`);
// Set derived parameters
params.vocab_chunk_size = vocab_chunk_size;
params.vocab_chunk_instances = splits;
params.head_size = params.n_embd / params.n_head;
params.hidden_size = params.n_embd * 4;
params.attention_scale = 1 / Math.sqrt(params.n_embd / params.n_head);
params.bias = params.bias == undefined ? true : params.bias;
// Check for overflow in buffers larger than maxStorageBufferBindingSize
const maxBufferSize = this.device.limits.maxStorageBufferBindingSize / 4;
if (params.n_embd * params.n_ctx > maxBufferSize) console.warn("Model load failed: n_embd * n_ctx must be less than maxStorageBufferBindingSize.");
if (params.n_embd * params.hidden_size > maxBufferSize)
console.warn("Model load failed: n_embd * hidden_size must be less than maxStorageBufferBindingSize.");
if (params.n_ctx * params.n_ctx * params.n_head > maxBufferSize)
console.warn("Model load failed: n_ctx * n_ctx must be less than maxStorageBufferBindingSize.");
if (params.n_embd * params.n_embd * 3 > maxBufferSize)
console.warn("Model load failed: n_embd * n_embd * 3 must be less than maxStorageBufferBindingSize.");
console.log("Params:", params);
return params;
}
async loadEmbeddings(params, weightsFolder) {
console.log("Loading token embeddings...");
const embeddingWeights = await fetchBin(`${weightsFolder}/transformer.wte.weight_gpt.bin`);
// Chunks are stored in row-major order and are of dimensions n_embd x vocab_chunk_size.
// Embedding weights are imported in column-major order and are of dimensions vocab_size x n_embd.
// We pre-transpose the chunk for the deEmbedding process for the matmul. Could do this on GPU later.
const embeddingsBuffers = [];
const deEmbeddingsBuffers = [];
for (let i = 0; i < params.vocab_chunk_instances; i++) {
console.log(`Loading deEmbedding chunk ${i + 1}/${params.vocab_chunk_instances}...`);
const offset = i * params.vocab_chunk_size;
let size = params.vocab_chunk_size;
const paddedArray = new Float32Array(params.vocab_chunk_size * params.n_embd);
if (i === params.vocab_chunk_instances - 1) {
size = params.vocab_size - offset;
paddedArray.set(size * params.n_embd, zeros((params.vocab_chunk_size * params.vocab_chunk_instances - params.vocab_size) * params.n_embd));
}
paddedArray.set(embeddingWeights.subarray(offset * params.n_embd, offset * params.n_embd + size * params.n_embd));
embeddingsBuffers.push(this.initTensor(paddedArray, [params.vocab_chunk_size, params.n_embd], ["copy_from"]));
const chunk = transpose(paddedArray, params.vocab_chunk_size, params.n_embd); // Use GPU perhaps?
deEmbeddingsBuffers.push(this.initTensor(chunk, [params.n_embd, params.vocab_chunk_size], ["storage"]));
}
return { embeddingsBuffers, deEmbeddingsBuffers };
}
async loadPositionalEmbeddings(params, weightsFolder) {
console.log("Loading positional embeddings...");
const posEmbeddings = await fetchBin(`${weightsFolder}/transformer.wpe.weight_gpt.bin`);
const posEmbdBuffer = this.initTensor(posEmbeddings, [params.n_ctx, params.n_embd], ["copy_from"]);
return { posEmbdBuffer };
}
async loadFinalLayerNorm(params, weightsFolder) {
console.log("Loading final norm...");
const prefix = `${weightsFolder}/transformer.ln_f.`;
const tensorPromises = [
this.fetchAndInitTensor(`${prefix}weight_gpt.bin`, [params.n_embd], ["storage"]),
this.fetchAndInitTensor(`${prefix}bias_gpt.bin`, [params.n_embd], ["storage"]),
];
const [normGammaBuffer, normBetaBuffer] = await Promise.all(tensorPromises);
return { normGammaBuffer, normBetaBuffer };
}
async loadLayers(params, weightsFolder) {
console.log("Loading layers...");
const layerPromises = [];
for (let i = 0; i < params.n_layer; i++) {
layerPromises.push(this.loadLayer(params, weightsFolder, i));
}
const layer_buffers = await Promise.all(layerPromises);
return layer_buffers;
}
async loadLayer(params, weightsFolder, layerIndex) {
console.log("Starting to load layer...", layerIndex);
const prefix = `${weightsFolder}transformer.h.${layerIndex}.`;
// Create an array of promises for fetching and initializing the tensors
const tensorPromises = [
this.fetchAndInitTensor(`${prefix}ln_1.weight_gpt.bin`, [params.n_embd], ["storage"]),
this.fetchAndInitTensor(`${prefix}ln_1.bias_gpt.bin`, [params.n_embd], ["storage"]),
this.fetchAndSplitQKVWeightTensors(`${prefix}attn.c_attn.weight_gpt.bin`, [params.n_embd, 3 * params.n_embd], ["storage"]),
this.fetchAndSplitQKVBiasTensors(`${prefix}attn.c_attn.bias_gpt.bin`, [params.n_embd], ["storage"]),
this.fetchAndInitTensor(`${prefix}attn.c_proj.weight_gpt.bin`, [params.n_embd, params.n_embd], ["storage"]),
this.fetchAndInitTensor(`${prefix}attn.c_proj.bias_gpt.bin`, [params.n_embd], ["storage"]),
this.fetchAndInitTensor(`${prefix}ln_2.weight_gpt.bin`, [params.n_embd], ["storage"]),
this.fetchAndInitTensor(`${prefix}ln_2.bias_gpt.bin`, [params.n_embd], ["storage"]),
this.fetchAndInitTensor(`${prefix}mlp.c_fc.weight_gpt.bin`, [params.n_embd, params.hidden_size], ["storage"]),
this.fetchAndInitTensor(`${prefix}mlp.c_fc.bias_gpt.bin`, [params.hidden_size], ["storage"]),
this.fetchAndInitTensor(`${prefix}mlp.c_proj.weight_gpt.bin`, [params.hidden_size, params.n_embd], ["storage"]),
this.fetchAndInitTensor(`${prefix}mlp.c_proj.bias_gpt.bin`, [params.n_embd], ["storage"]),
];
// Wait for all tensors to be fetched and initialized
const [
normAttentionGammaBuffer,
normAttentionBetaBuffer,
qkvWeightArray,
qkvBiasArray,
linearWeightsBuffer,
linearBiasBuffer,
normLinearGammaBuffer,
normLinearBetaBuffer,
firstLayerWeightsBuffer,
firstLayerBiasBuffer,
secondLayerWeightsBuffer,
secondLayerBiasBuffer,
] = await Promise.all(tensorPromises);
// Process the fetched data and return the layer buffers
return {
normAttentionGammaBuffer,
normAttentionBetaBuffer,
qkvWeightArray,
qkvBiasArray,
linearWeightsBuffer,
linearBiasBuffer,
normLinearGammaBuffer,
normLinearBetaBuffer,
firstLayerWeightsBuffer,
firstLayerBiasBuffer,
secondLayerWeightsBuffer,
secondLayerBiasBuffer,
};
}
async fetchAndSplitQKVWeightTensors(url, dims, ops) {
const data = transpose(await fetchBin(url), dims[0], dims[1]);
const qWeights = transpose(data.subarray(0, dims[0] * dims[0]), dims[0], dims[0]);
const kWeights = transpose(data.subarray(dims[0] * dims[0], dims[0] * dims[0] * 2), dims[0], dims[0]);
const vWeights = transpose(data.subarray(dims[0] * dims[0] * 2, dims[0] * dims[0] * 3), dims[0], dims[0]);
const qWeightsBuffer = this.initTensor(qWeights, [dims[0], dims[0]], ops);
const kWeightsBuffer = this.initTensor(kWeights, [dims[0], dims[0]], ops);
const vWeightsBuffer = this.initTensor(vWeights, [dims[0], dims[0]], ops);
return [qWeightsBuffer, kWeightsBuffer, vWeightsBuffer];
}
async fetchAndSplitQKVBiasTensors(url, dims, ops) {
const data = await fetchBin(url);
const qBias = data.subarray(0, dims[0]);
const kBias = data.subarray(dims[0], dims[0] * 2);
const vBias = data.subarray(dims[0] * 2, dims[0] * 3);
const qBiasBuffer = this.initTensor(qBias, [dims[0]], ops);
const kBiasBuffer = this.initTensor(kBias, [dims[0]], ops);
const vBiasBuffer = this.initTensor(vBias, [dims[0]], ops);
return [qBiasBuffer, kBiasBuffer, vBiasBuffer];
}
async fetchAndInitTensor(url, dims, ops) {
console.log("Fetching and initializing tensor...", url);
const data = await fetchBin(url);
return this.initTensor(data, dims, ops);
}
initTensor(data, dims, ops) {
const buffer = this.device.createBuffer({
size: this.bufferSize(dims[0], dims[1] || 1, dims[2] || 1),
usage: ops.map((u) => bufferUsageDict[u]).reduce((a, b) => a | b),
mappedAtCreation: true,
});
new Float32Array(buffer.getMappedRange()).set(data);
buffer.unmap();
this.unloadDeletionStack.push(buffer);
return buffer;
}
unloadBuffers() {
this.unloadDeletionStack.map((buffer) => buffer.destroy());
this.unloadDeletionStack = [];
}
bufferSize(dimX, dimY = 1, dimZ = 1) {
const size = Math.ceil((dimX * dimY * dimZ * Float32Array.BYTES_PER_ELEMENT) / this.minBufferOffset) * this.minBufferOffset;
if (size > this.device.limits.maxStorageBufferBindingSize)
console.warn("Warning: Buffer size calc result exceeds GPU limit, are you using this value for a tensor size?", dimX, dimY, dimZ, size);
return size;
}
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。