代码拉取完成,页面将自动刷新
import numpy as np
import os
from glob import glob
import scipy.io as sio
from skimage.io import imread, imsave
from time import time
from api import PRN
from utils.write import write_obj_with_colors
# ---- init PRN
os.environ['CUDA_VISIBLE_DEVICES'] = '0' # GPU number, -1 for CPU
prn = PRN(is_dlib = False)
# ------------- load data
image_folder = 'TestImages/AFLW2000/'
save_folder = 'TestImages/AFLW2000_results'
if not os.path.exists(save_folder):
os.mkdir(save_folder)
types = ('*.jpg', '*.png')
image_path_list= []
for files in types:
image_path_list.extend(glob(os.path.join(image_folder, files)))
total_num = len(image_path_list)
for i, image_path in enumerate(image_path_list):
# read image
image = imread(image_path)
# the core: regress position map
if 'AFLW2000' in image_path:
mat_path = image_path.replace('jpg', 'mat')
info = sio.loadmat(mat_path)
kpt = info['pt3d_68']
pos = prn.process(image, kpt) # kpt information is only used for detecting face and cropping image
else:
pos = prn.process(image) # use dlib to detect face
# -- Basic Applications
# get landmarks
kpt = prn.get_landmarks(pos)
# 3D vertices
vertices = prn.get_vertices(pos)
# corresponding colors
colors = prn.get_colors(image, vertices)
# -- save
name = image_path.strip().split('/')[-1][:-4]
np.savetxt(os.path.join(save_folder, name + '.txt'), kpt)
write_obj_with_colors(os.path.join(save_folder, name + '.obj'), vertices, prn.triangles, colors) #save 3d face(can open with meshlab)
sio.savemat(os.path.join(save_folder, name + '_mesh.mat'), {'vertices': vertices, 'colors': colors, 'triangles': prn.triangles})
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。