3 Star 0 Fork 1

Gitee 极速下载/isl

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
此仓库是为了提升国内下载速度的镜像仓库,每日同步一次。 原始仓库: https://repo.or.cz/isl.git
克隆/下载
isl_polynomial.c 121.07 KB
一键复制 编辑 原始数据 按行查看 历史
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433
/*
* Copyright 2010 INRIA Saclay
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
* Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
* 91893 Orsay, France
*/
#include <stdlib.h>
#include <isl_ctx_private.h>
#include <isl_map_private.h>
#include <isl_factorization.h>
#include <isl_lp_private.h>
#include <isl_seq.h>
#include <isl_union_map_private.h>
#include <isl_constraint_private.h>
#include <isl_polynomial_private.h>
#include <isl_point_private.h>
#include <isl_space_private.h>
#include <isl_mat_private.h>
#include <isl_vec_private.h>
#include <isl_range.h>
#include <isl_local.h>
#include <isl_local_space_private.h>
#include <isl_aff_private.h>
#include <isl_val_private.h>
#include <isl_config.h>
#undef EL_BASE
#define EL_BASE qpolynomial
#include <isl_list_templ.c>
#undef EL_BASE
#define EL_BASE pw_qpolynomial
#include <isl_list_templ.c>
static unsigned pos(__isl_keep isl_space *space, enum isl_dim_type type)
{
switch (type) {
case isl_dim_param: return 0;
case isl_dim_in: return space->nparam;
case isl_dim_out: return space->nparam + space->n_in;
default: return 0;
}
}
isl_bool isl_poly_is_cst(__isl_keep isl_poly *poly)
{
if (!poly)
return isl_bool_error;
return isl_bool_ok(poly->var < 0);
}
__isl_keep isl_poly_cst *isl_poly_as_cst(__isl_keep isl_poly *poly)
{
if (!poly)
return NULL;
isl_assert(poly->ctx, poly->var < 0, return NULL);
return (isl_poly_cst *) poly;
}
__isl_keep isl_poly_rec *isl_poly_as_rec(__isl_keep isl_poly *poly)
{
if (!poly)
return NULL;
isl_assert(poly->ctx, poly->var >= 0, return NULL);
return (isl_poly_rec *) poly;
}
/* Compare two polynomials.
*
* Return -1 if "poly1" is "smaller" than "poly2", 1 if "poly1" is "greater"
* than "poly2" and 0 if they are equal.
*/
static int isl_poly_plain_cmp(__isl_keep isl_poly *poly1,
__isl_keep isl_poly *poly2)
{
int i;
isl_bool is_cst1;
isl_poly_rec *rec1, *rec2;
if (poly1 == poly2)
return 0;
is_cst1 = isl_poly_is_cst(poly1);
if (is_cst1 < 0)
return -1;
if (!poly2)
return 1;
if (poly1->var != poly2->var)
return poly1->var - poly2->var;
if (is_cst1) {
isl_poly_cst *cst1, *cst2;
int cmp;
cst1 = isl_poly_as_cst(poly1);
cst2 = isl_poly_as_cst(poly2);
if (!cst1 || !cst2)
return 0;
cmp = isl_int_cmp(cst1->n, cst2->n);
if (cmp != 0)
return cmp;
return isl_int_cmp(cst1->d, cst2->d);
}
rec1 = isl_poly_as_rec(poly1);
rec2 = isl_poly_as_rec(poly2);
if (!rec1 || !rec2)
return 0;
if (rec1->n != rec2->n)
return rec1->n - rec2->n;
for (i = 0; i < rec1->n; ++i) {
int cmp = isl_poly_plain_cmp(rec1->p[i], rec2->p[i]);
if (cmp != 0)
return cmp;
}
return 0;
}
isl_bool isl_poly_is_equal(__isl_keep isl_poly *poly1,
__isl_keep isl_poly *poly2)
{
int i;
isl_bool is_cst1;
isl_poly_rec *rec1, *rec2;
is_cst1 = isl_poly_is_cst(poly1);
if (is_cst1 < 0 || !poly2)
return isl_bool_error;
if (poly1 == poly2)
return isl_bool_true;
if (poly1->var != poly2->var)
return isl_bool_false;
if (is_cst1) {
isl_poly_cst *cst1, *cst2;
int r;
cst1 = isl_poly_as_cst(poly1);
cst2 = isl_poly_as_cst(poly2);
if (!cst1 || !cst2)
return isl_bool_error;
r = isl_int_eq(cst1->n, cst2->n) &&
isl_int_eq(cst1->d, cst2->d);
return isl_bool_ok(r);
}
rec1 = isl_poly_as_rec(poly1);
rec2 = isl_poly_as_rec(poly2);
if (!rec1 || !rec2)
return isl_bool_error;
if (rec1->n != rec2->n)
return isl_bool_false;
for (i = 0; i < rec1->n; ++i) {
isl_bool eq = isl_poly_is_equal(rec1->p[i], rec2->p[i]);
if (eq < 0 || !eq)
return eq;
}
return isl_bool_true;
}
isl_bool isl_poly_is_zero(__isl_keep isl_poly *poly)
{
isl_bool is_cst;
isl_poly_cst *cst;
is_cst = isl_poly_is_cst(poly);
if (is_cst < 0 || !is_cst)
return is_cst;
cst = isl_poly_as_cst(poly);
if (!cst)
return isl_bool_error;
return isl_bool_ok(isl_int_is_zero(cst->n) && isl_int_is_pos(cst->d));
}
int isl_poly_sgn(__isl_keep isl_poly *poly)
{
isl_bool is_cst;
isl_poly_cst *cst;
is_cst = isl_poly_is_cst(poly);
if (is_cst < 0 || !is_cst)
return 0;
cst = isl_poly_as_cst(poly);
if (!cst)
return 0;
return isl_int_sgn(cst->n);
}
isl_bool isl_poly_is_nan(__isl_keep isl_poly *poly)
{
isl_bool is_cst;
isl_poly_cst *cst;
is_cst = isl_poly_is_cst(poly);
if (is_cst < 0 || !is_cst)
return is_cst;
cst = isl_poly_as_cst(poly);
if (!cst)
return isl_bool_error;
return isl_bool_ok(isl_int_is_zero(cst->n) && isl_int_is_zero(cst->d));
}
isl_bool isl_poly_is_infty(__isl_keep isl_poly *poly)
{
isl_bool is_cst;
isl_poly_cst *cst;
is_cst = isl_poly_is_cst(poly);
if (is_cst < 0 || !is_cst)
return is_cst;
cst = isl_poly_as_cst(poly);
if (!cst)
return isl_bool_error;
return isl_bool_ok(isl_int_is_pos(cst->n) && isl_int_is_zero(cst->d));
}
isl_bool isl_poly_is_neginfty(__isl_keep isl_poly *poly)
{
isl_bool is_cst;
isl_poly_cst *cst;
is_cst = isl_poly_is_cst(poly);
if (is_cst < 0 || !is_cst)
return is_cst;
cst = isl_poly_as_cst(poly);
if (!cst)
return isl_bool_error;
return isl_bool_ok(isl_int_is_neg(cst->n) && isl_int_is_zero(cst->d));
}
isl_bool isl_poly_is_one(__isl_keep isl_poly *poly)
{
isl_bool is_cst;
isl_poly_cst *cst;
int r;
is_cst = isl_poly_is_cst(poly);
if (is_cst < 0 || !is_cst)
return is_cst;
cst = isl_poly_as_cst(poly);
if (!cst)
return isl_bool_error;
r = isl_int_eq(cst->n, cst->d) && isl_int_is_pos(cst->d);
return isl_bool_ok(r);
}
isl_bool isl_poly_is_negone(__isl_keep isl_poly *poly)
{
isl_bool is_cst;
isl_poly_cst *cst;
is_cst = isl_poly_is_cst(poly);
if (is_cst < 0 || !is_cst)
return is_cst;
cst = isl_poly_as_cst(poly);
if (!cst)
return isl_bool_error;
return isl_bool_ok(isl_int_is_negone(cst->n) && isl_int_is_one(cst->d));
}
__isl_give isl_poly_cst *isl_poly_cst_alloc(isl_ctx *ctx)
{
isl_poly_cst *cst;
cst = isl_alloc_type(ctx, struct isl_poly_cst);
if (!cst)
return NULL;
cst->poly.ref = 1;
cst->poly.ctx = ctx;
isl_ctx_ref(ctx);
cst->poly.var = -1;
isl_int_init(cst->n);
isl_int_init(cst->d);
return cst;
}
__isl_give isl_poly *isl_poly_zero(isl_ctx *ctx)
{
isl_poly_cst *cst;
cst = isl_poly_cst_alloc(ctx);
if (!cst)
return NULL;
isl_int_set_si(cst->n, 0);
isl_int_set_si(cst->d, 1);
return &cst->poly;
}
__isl_give isl_poly *isl_poly_one(isl_ctx *ctx)
{
isl_poly_cst *cst;
cst = isl_poly_cst_alloc(ctx);
if (!cst)
return NULL;
isl_int_set_si(cst->n, 1);
isl_int_set_si(cst->d, 1);
return &cst->poly;
}
__isl_give isl_poly *isl_poly_infty(isl_ctx *ctx)
{
isl_poly_cst *cst;
cst = isl_poly_cst_alloc(ctx);
if (!cst)
return NULL;
isl_int_set_si(cst->n, 1);
isl_int_set_si(cst->d, 0);
return &cst->poly;
}
__isl_give isl_poly *isl_poly_neginfty(isl_ctx *ctx)
{
isl_poly_cst *cst;
cst = isl_poly_cst_alloc(ctx);
if (!cst)
return NULL;
isl_int_set_si(cst->n, -1);
isl_int_set_si(cst->d, 0);
return &cst->poly;
}
__isl_give isl_poly *isl_poly_nan(isl_ctx *ctx)
{
isl_poly_cst *cst;
cst = isl_poly_cst_alloc(ctx);
if (!cst)
return NULL;
isl_int_set_si(cst->n, 0);
isl_int_set_si(cst->d, 0);
return &cst->poly;
}
__isl_give isl_poly *isl_poly_rat_cst(isl_ctx *ctx, isl_int n, isl_int d)
{
isl_poly_cst *cst;
cst = isl_poly_cst_alloc(ctx);
if (!cst)
return NULL;
isl_int_set(cst->n, n);
isl_int_set(cst->d, d);
return &cst->poly;
}
__isl_give isl_poly_rec *isl_poly_alloc_rec(isl_ctx *ctx, int var, int size)
{
isl_poly_rec *rec;
isl_assert(ctx, var >= 0, return NULL);
isl_assert(ctx, size >= 0, return NULL);
rec = isl_calloc(ctx, struct isl_poly_rec,
sizeof(struct isl_poly_rec) +
size * sizeof(struct isl_poly *));
if (!rec)
return NULL;
rec->poly.ref = 1;
rec->poly.ctx = ctx;
isl_ctx_ref(ctx);
rec->poly.var = var;
rec->n = 0;
rec->size = size;
return rec;
}
/* Return the domain space of "qp".
* This may be either a copy or the space itself
* if there is only one reference to "qp".
* This allows the space to be modified inplace
* if both the quasi-polynomial and its domain space
* have only a single reference.
* The caller is not allowed to modify "qp" between this call and
* a subsequent call to isl_qpolynomial_restore_domain_space.
* The only exception is that isl_qpolynomial_free can be called instead.
*/
static __isl_give isl_space *isl_qpolynomial_take_domain_space(
__isl_keep isl_qpolynomial *qp)
{
isl_space *space;
if (!qp)
return NULL;
if (qp->ref != 1)
return isl_qpolynomial_get_domain_space(qp);
space = qp->dim;
qp->dim = NULL;
return space;
}
/* Set the domain space of "qp" to "space",
* where the domain space of "qp" may be missing
* due to a preceding call to isl_qpolynomial_take_domain_space.
* However, in this case, "qp" only has a single reference and
* then the call to isl_qpolynomial_cow has no effect.
*/
static __isl_give isl_qpolynomial *isl_qpolynomial_restore_domain_space(
__isl_take isl_qpolynomial *qp, __isl_take isl_space *space)
{
if (!qp || !space)
goto error;
if (qp->dim == space) {
isl_space_free(space);
return qp;
}
qp = isl_qpolynomial_cow(qp);
if (!qp)
goto error;
isl_space_free(qp->dim);
qp->dim = space;
return qp;
error:
isl_qpolynomial_free(qp);
isl_space_free(space);
return NULL;
}
__isl_give isl_qpolynomial *isl_qpolynomial_reset_domain_space(
__isl_take isl_qpolynomial *qp, __isl_take isl_space *space)
{
return isl_qpolynomial_restore_domain_space(qp, space);
}
/* Reset the space of "qp". This function is called from isl_pw_templ.c
* and doesn't know if the space of an element object is represented
* directly or through its domain. It therefore passes along both.
*/
__isl_give isl_qpolynomial *isl_qpolynomial_reset_space_and_domain(
__isl_take isl_qpolynomial *qp, __isl_take isl_space *space,
__isl_take isl_space *domain)
{
isl_space_free(space);
return isl_qpolynomial_reset_domain_space(qp, domain);
}
isl_ctx *isl_qpolynomial_get_ctx(__isl_keep isl_qpolynomial *qp)
{
return qp ? qp->dim->ctx : NULL;
}
/* Return the domain space of "qp".
*/
static __isl_keep isl_space *isl_qpolynomial_peek_domain_space(
__isl_keep isl_qpolynomial *qp)
{
return qp ? qp->dim : NULL;
}
/* Return a copy of the domain space of "qp".
*/
__isl_give isl_space *isl_qpolynomial_get_domain_space(
__isl_keep isl_qpolynomial *qp)
{
return isl_space_copy(isl_qpolynomial_peek_domain_space(qp));
}
#undef TYPE
#define TYPE isl_qpolynomial
#undef PEEK_SPACE
#define PEEK_SPACE peek_domain_space
static
#include "isl_type_has_equal_space_bin_templ.c"
static
#include "isl_type_check_equal_space_templ.c"
#undef PEEK_SPACE
/* Return a copy of the local variables of "qp".
*/
__isl_keep isl_local *isl_qpolynomial_get_local(
__isl_keep isl_qpolynomial *qp)
{
return qp ? isl_local_copy(qp->div) : NULL;
}
/* Return the local variables of "qp".
* This may be either a copy or the local variables themselves
* if there is only one reference to "qp".
* This allows the local variables to be modified in-place
* if both the quasi-polynomial and its local variables
* have only a single reference.
* The caller is not allowed to modify "qp" between this call and
* the subsequent call to isl_qpolynomial_restore_local.
* The only exception is that isl_qpolynomial_free can be called instead.
*/
static __isl_give isl_local *isl_qpolynomial_take_local(
__isl_keep isl_qpolynomial *qp)
{
isl_local *local;
if (!qp)
return NULL;
if (qp->ref != 1)
return isl_qpolynomial_get_local(qp);
local = qp->div;
qp->div = NULL;
return local;
}
/* Set the local variables of "qp" to "local",
* where the local variables of "qp" may be missing
* due to a preceding call to isl_qpolynomial_take_local.
* However, in this case, "qp" only has a single reference and
* then the call to isl_qpolynomial_cow has no effect.
*/
static __isl_give isl_qpolynomial *isl_qpolynomial_restore_local(
__isl_keep isl_qpolynomial *qp, __isl_take isl_local *local)
{
if (!qp || !local)
goto error;
if (qp->div == local) {
isl_local_free(local);
return qp;
}
qp = isl_qpolynomial_cow(qp);
if (!qp)
goto error;
isl_local_free(qp->div);
qp->div = local;
return qp;
error:
isl_qpolynomial_free(qp);
isl_local_free(local);
return NULL;
}
/* Return a copy of the local space on which "qp" is defined.
*/
static __isl_give isl_local_space *isl_qpolynomial_get_domain_local_space(
__isl_keep isl_qpolynomial *qp)
{
isl_space *space;
isl_local *local;
if (!qp)
return NULL;
space = isl_qpolynomial_get_domain_space(qp);
local = isl_qpolynomial_get_local(qp);
return isl_local_space_alloc_div(space, local);
}
__isl_give isl_space *isl_qpolynomial_get_space(__isl_keep isl_qpolynomial *qp)
{
isl_space *space;
if (!qp)
return NULL;
space = isl_space_copy(qp->dim);
space = isl_space_from_domain(space);
space = isl_space_add_dims(space, isl_dim_out, 1);
return space;
}
/* Return the number of variables of the given type in the domain of "qp".
*/
isl_size isl_qpolynomial_domain_dim(__isl_keep isl_qpolynomial *qp,
enum isl_dim_type type)
{
isl_space *space;
isl_size dim;
space = isl_qpolynomial_peek_domain_space(qp);
if (!space)
return isl_size_error;
if (type == isl_dim_div)
return qp->div->n_row;
dim = isl_space_dim(space, type);
if (dim < 0)
return isl_size_error;
if (type == isl_dim_all) {
isl_size n_div;
n_div = isl_qpolynomial_domain_dim(qp, isl_dim_div);
if (n_div < 0)
return isl_size_error;
dim += n_div;
}
return dim;
}
/* Given the type of a dimension of an isl_qpolynomial,
* return the type of the corresponding dimension in its domain.
* This function is only called for "type" equal to isl_dim_in or
* isl_dim_param.
*/
static enum isl_dim_type domain_type(enum isl_dim_type type)
{
return type == isl_dim_in ? isl_dim_set : type;
}
/* Externally, an isl_qpolynomial has a map space, but internally, the
* ls field corresponds to the domain of that space.
*/
isl_size isl_qpolynomial_dim(__isl_keep isl_qpolynomial *qp,
enum isl_dim_type type)
{
if (!qp)
return isl_size_error;
if (type == isl_dim_out)
return 1;
type = domain_type(type);
return isl_qpolynomial_domain_dim(qp, type);
}
/* Return the offset of the first variable of type "type" within
* the variables of the domain of "qp".
*/
static isl_size isl_qpolynomial_domain_var_offset(
__isl_keep isl_qpolynomial *qp, enum isl_dim_type type)
{
isl_space *space;
space = isl_qpolynomial_peek_domain_space(qp);
switch (type) {
case isl_dim_param:
case isl_dim_set: return isl_space_offset(space, type);
case isl_dim_div: return isl_space_dim(space, isl_dim_all);
case isl_dim_cst:
default:
isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
"invalid dimension type", return isl_size_error);
}
}
/* Return the offset of the first coefficient of type "type" in
* the domain of "qp".
*/
unsigned isl_qpolynomial_domain_offset(__isl_keep isl_qpolynomial *qp,
enum isl_dim_type type)
{
switch (type) {
case isl_dim_cst:
return 0;
case isl_dim_param:
case isl_dim_set:
case isl_dim_div:
return 1 + isl_qpolynomial_domain_var_offset(qp, type);
default:
return 0;
}
}
/* Return the polynomial expression of "qp".
*/
static __isl_keep isl_poly *isl_qpolynomial_peek_poly(
__isl_keep isl_qpolynomial *qp)
{
return qp ? qp->poly : NULL;
}
isl_bool isl_qpolynomial_is_zero(__isl_keep isl_qpolynomial *qp)
{
return isl_poly_is_zero(isl_qpolynomial_peek_poly(qp));
}
isl_bool isl_qpolynomial_is_one(__isl_keep isl_qpolynomial *qp)
{
return isl_poly_is_one(isl_qpolynomial_peek_poly(qp));
}
isl_bool isl_qpolynomial_is_nan(__isl_keep isl_qpolynomial *qp)
{
return isl_poly_is_nan(isl_qpolynomial_peek_poly(qp));
}
isl_bool isl_qpolynomial_is_infty(__isl_keep isl_qpolynomial *qp)
{
return isl_poly_is_infty(isl_qpolynomial_peek_poly(qp));
}
isl_bool isl_qpolynomial_is_neginfty(__isl_keep isl_qpolynomial *qp)
{
return isl_poly_is_neginfty(isl_qpolynomial_peek_poly(qp));
}
int isl_qpolynomial_sgn(__isl_keep isl_qpolynomial *qp)
{
return isl_poly_sgn(isl_qpolynomial_peek_poly(qp));
}
static void poly_free_cst(__isl_take isl_poly_cst *cst)
{
isl_int_clear(cst->n);
isl_int_clear(cst->d);
}
static void poly_free_rec(__isl_take isl_poly_rec *rec)
{
int i;
for (i = 0; i < rec->n; ++i)
isl_poly_free(rec->p[i]);
}
__isl_give isl_poly *isl_poly_copy(__isl_keep isl_poly *poly)
{
if (!poly)
return NULL;
poly->ref++;
return poly;
}
__isl_give isl_poly *isl_poly_dup_cst(__isl_keep isl_poly *poly)
{
isl_poly_cst *cst;
isl_poly_cst *dup;
cst = isl_poly_as_cst(poly);
if (!cst)
return NULL;
dup = isl_poly_as_cst(isl_poly_zero(poly->ctx));
if (!dup)
return NULL;
isl_int_set(dup->n, cst->n);
isl_int_set(dup->d, cst->d);
return &dup->poly;
}
__isl_give isl_poly *isl_poly_dup_rec(__isl_keep isl_poly *poly)
{
int i;
isl_poly_rec *rec;
isl_poly_rec *dup;
rec = isl_poly_as_rec(poly);
if (!rec)
return NULL;
dup = isl_poly_alloc_rec(poly->ctx, poly->var, rec->n);
if (!dup)
return NULL;
for (i = 0; i < rec->n; ++i) {
dup->p[i] = isl_poly_copy(rec->p[i]);
if (!dup->p[i])
goto error;
dup->n++;
}
return &dup->poly;
error:
isl_poly_free(&dup->poly);
return NULL;
}
__isl_give isl_poly *isl_poly_dup(__isl_keep isl_poly *poly)
{
isl_bool is_cst;
is_cst = isl_poly_is_cst(poly);
if (is_cst < 0)
return NULL;
if (is_cst)
return isl_poly_dup_cst(poly);
else
return isl_poly_dup_rec(poly);
}
__isl_give isl_poly *isl_poly_cow(__isl_take isl_poly *poly)
{
if (!poly)
return NULL;
if (poly->ref == 1)
return poly;
poly->ref--;
return isl_poly_dup(poly);
}
__isl_null isl_poly *isl_poly_free(__isl_take isl_poly *poly)
{
if (!poly)
return NULL;
if (--poly->ref > 0)
return NULL;
if (poly->var < 0)
poly_free_cst((isl_poly_cst *) poly);
else
poly_free_rec((isl_poly_rec *) poly);
isl_ctx_deref(poly->ctx);
free(poly);
return NULL;
}
static void isl_poly_cst_reduce(__isl_keep isl_poly_cst *cst)
{
isl_int gcd;
isl_int_init(gcd);
isl_int_gcd(gcd, cst->n, cst->d);
if (!isl_int_is_zero(gcd) && !isl_int_is_one(gcd)) {
isl_int_divexact(cst->n, cst->n, gcd);
isl_int_divexact(cst->d, cst->d, gcd);
}
isl_int_clear(gcd);
}
__isl_give isl_poly *isl_poly_sum_cst(__isl_take isl_poly *poly1,
__isl_take isl_poly *poly2)
{
isl_poly_cst *cst1;
isl_poly_cst *cst2;
poly1 = isl_poly_cow(poly1);
if (!poly1 || !poly2)
goto error;
cst1 = isl_poly_as_cst(poly1);
cst2 = isl_poly_as_cst(poly2);
if (isl_int_eq(cst1->d, cst2->d))
isl_int_add(cst1->n, cst1->n, cst2->n);
else {
isl_int_mul(cst1->n, cst1->n, cst2->d);
isl_int_addmul(cst1->n, cst2->n, cst1->d);
isl_int_mul(cst1->d, cst1->d, cst2->d);
}
isl_poly_cst_reduce(cst1);
isl_poly_free(poly2);
return poly1;
error:
isl_poly_free(poly1);
isl_poly_free(poly2);
return NULL;
}
static __isl_give isl_poly *replace_by_zero(__isl_take isl_poly *poly)
{
struct isl_ctx *ctx;
if (!poly)
return NULL;
ctx = poly->ctx;
isl_poly_free(poly);
return isl_poly_zero(ctx);
}
static __isl_give isl_poly *replace_by_constant_term(__isl_take isl_poly *poly)
{
isl_poly_rec *rec;
isl_poly *cst;
if (!poly)
return NULL;
rec = isl_poly_as_rec(poly);
if (!rec)
goto error;
cst = isl_poly_copy(rec->p[0]);
isl_poly_free(poly);
return cst;
error:
isl_poly_free(poly);
return NULL;
}
__isl_give isl_poly *isl_poly_sum(__isl_take isl_poly *poly1,
__isl_take isl_poly *poly2)
{
int i;
isl_bool is_zero, is_nan, is_cst;
isl_poly_rec *rec1, *rec2;
if (!poly1 || !poly2)
goto error;
is_nan = isl_poly_is_nan(poly1);
if (is_nan < 0)
goto error;
if (is_nan) {
isl_poly_free(poly2);
return poly1;
}
is_nan = isl_poly_is_nan(poly2);
if (is_nan < 0)
goto error;
if (is_nan) {
isl_poly_free(poly1);
return poly2;
}
is_zero = isl_poly_is_zero(poly1);
if (is_zero < 0)
goto error;
if (is_zero) {
isl_poly_free(poly1);
return poly2;
}
is_zero = isl_poly_is_zero(poly2);
if (is_zero < 0)
goto error;
if (is_zero) {
isl_poly_free(poly2);
return poly1;
}
if (poly1->var < poly2->var)
return isl_poly_sum(poly2, poly1);
if (poly2->var < poly1->var) {
isl_poly_rec *rec;
isl_bool is_infty;
is_infty = isl_poly_is_infty(poly2);
if (is_infty >= 0 && !is_infty)
is_infty = isl_poly_is_neginfty(poly2);
if (is_infty < 0)
goto error;
if (is_infty) {
isl_poly_free(poly1);
return poly2;
}
poly1 = isl_poly_cow(poly1);
rec = isl_poly_as_rec(poly1);
if (!rec)
goto error;
rec->p[0] = isl_poly_sum(rec->p[0], poly2);
if (rec->n == 1)
poly1 = replace_by_constant_term(poly1);
return poly1;
}
is_cst = isl_poly_is_cst(poly1);
if (is_cst < 0)
goto error;
if (is_cst)
return isl_poly_sum_cst(poly1, poly2);
rec1 = isl_poly_as_rec(poly1);
rec2 = isl_poly_as_rec(poly2);
if (!rec1 || !rec2)
goto error;
if (rec1->n < rec2->n)
return isl_poly_sum(poly2, poly1);
poly1 = isl_poly_cow(poly1);
rec1 = isl_poly_as_rec(poly1);
if (!rec1)
goto error;
for (i = rec2->n - 1; i >= 0; --i) {
isl_bool is_zero;
rec1->p[i] = isl_poly_sum(rec1->p[i],
isl_poly_copy(rec2->p[i]));
if (!rec1->p[i])
goto error;
if (i != rec1->n - 1)
continue;
is_zero = isl_poly_is_zero(rec1->p[i]);
if (is_zero < 0)
goto error;
if (is_zero) {
isl_poly_free(rec1->p[i]);
rec1->n--;
}
}
if (rec1->n == 0)
poly1 = replace_by_zero(poly1);
else if (rec1->n == 1)
poly1 = replace_by_constant_term(poly1);
isl_poly_free(poly2);
return poly1;
error:
isl_poly_free(poly1);
isl_poly_free(poly2);
return NULL;
}
__isl_give isl_poly *isl_poly_cst_add_isl_int(__isl_take isl_poly *poly,
isl_int v)
{
isl_poly_cst *cst;
poly = isl_poly_cow(poly);
if (!poly)
return NULL;
cst = isl_poly_as_cst(poly);
isl_int_addmul(cst->n, cst->d, v);
return poly;
}
__isl_give isl_poly *isl_poly_add_isl_int(__isl_take isl_poly *poly, isl_int v)
{
isl_bool is_cst;
isl_poly_rec *rec;
is_cst = isl_poly_is_cst(poly);
if (is_cst < 0)
return isl_poly_free(poly);
if (is_cst)
return isl_poly_cst_add_isl_int(poly, v);
poly = isl_poly_cow(poly);
rec = isl_poly_as_rec(poly);
if (!rec)
goto error;
rec->p[0] = isl_poly_add_isl_int(rec->p[0], v);
if (!rec->p[0])
goto error;
return poly;
error:
isl_poly_free(poly);
return NULL;
}
__isl_give isl_poly *isl_poly_cst_mul_isl_int(__isl_take isl_poly *poly,
isl_int v)
{
isl_bool is_zero;
isl_poly_cst *cst;
is_zero = isl_poly_is_zero(poly);
if (is_zero < 0)
return isl_poly_free(poly);
if (is_zero)
return poly;
poly = isl_poly_cow(poly);
if (!poly)
return NULL;
cst = isl_poly_as_cst(poly);
isl_int_mul(cst->n, cst->n, v);
return poly;
}
__isl_give isl_poly *isl_poly_mul_isl_int(__isl_take isl_poly *poly, isl_int v)
{
int i;
isl_bool is_cst;
isl_poly_rec *rec;
is_cst = isl_poly_is_cst(poly);
if (is_cst < 0)
return isl_poly_free(poly);
if (is_cst)
return isl_poly_cst_mul_isl_int(poly, v);
poly = isl_poly_cow(poly);
rec = isl_poly_as_rec(poly);
if (!rec)
goto error;
for (i = 0; i < rec->n; ++i) {
rec->p[i] = isl_poly_mul_isl_int(rec->p[i], v);
if (!rec->p[i])
goto error;
}
return poly;
error:
isl_poly_free(poly);
return NULL;
}
/* Multiply the constant polynomial "poly" by "v".
*/
static __isl_give isl_poly *isl_poly_cst_scale_val(__isl_take isl_poly *poly,
__isl_keep isl_val *v)
{
isl_bool is_zero;
isl_poly_cst *cst;
is_zero = isl_poly_is_zero(poly);
if (is_zero < 0)
return isl_poly_free(poly);
if (is_zero)
return poly;
poly = isl_poly_cow(poly);
if (!poly)
return NULL;
cst = isl_poly_as_cst(poly);
isl_int_mul(cst->n, cst->n, v->n);
isl_int_mul(cst->d, cst->d, v->d);
isl_poly_cst_reduce(cst);
return poly;
}
/* Multiply the polynomial "poly" by "v".
*/
static __isl_give isl_poly *isl_poly_scale_val(__isl_take isl_poly *poly,
__isl_keep isl_val *v)
{
int i;
isl_bool is_cst;
isl_poly_rec *rec;
is_cst = isl_poly_is_cst(poly);
if (is_cst < 0)
return isl_poly_free(poly);
if (is_cst)
return isl_poly_cst_scale_val(poly, v);
poly = isl_poly_cow(poly);
rec = isl_poly_as_rec(poly);
if (!rec)
goto error;
for (i = 0; i < rec->n; ++i) {
rec->p[i] = isl_poly_scale_val(rec->p[i], v);
if (!rec->p[i])
goto error;
}
return poly;
error:
isl_poly_free(poly);
return NULL;
}
__isl_give isl_poly *isl_poly_mul_cst(__isl_take isl_poly *poly1,
__isl_take isl_poly *poly2)
{
isl_poly_cst *cst1;
isl_poly_cst *cst2;
poly1 = isl_poly_cow(poly1);
if (!poly1 || !poly2)
goto error;
cst1 = isl_poly_as_cst(poly1);
cst2 = isl_poly_as_cst(poly2);
isl_int_mul(cst1->n, cst1->n, cst2->n);
isl_int_mul(cst1->d, cst1->d, cst2->d);
isl_poly_cst_reduce(cst1);
isl_poly_free(poly2);
return poly1;
error:
isl_poly_free(poly1);
isl_poly_free(poly2);
return NULL;
}
__isl_give isl_poly *isl_poly_mul_rec(__isl_take isl_poly *poly1,
__isl_take isl_poly *poly2)
{
isl_poly_rec *rec1;
isl_poly_rec *rec2;
isl_poly_rec *res = NULL;
int i, j;
int size;
rec1 = isl_poly_as_rec(poly1);
rec2 = isl_poly_as_rec(poly2);
if (!rec1 || !rec2)
goto error;
size = rec1->n + rec2->n - 1;
res = isl_poly_alloc_rec(poly1->ctx, poly1->var, size);
if (!res)
goto error;
for (i = 0; i < rec1->n; ++i) {
res->p[i] = isl_poly_mul(isl_poly_copy(rec2->p[0]),
isl_poly_copy(rec1->p[i]));
if (!res->p[i])
goto error;
res->n++;
}
for (; i < size; ++i) {
res->p[i] = isl_poly_zero(poly1->ctx);
if (!res->p[i])
goto error;
res->n++;
}
for (i = 0; i < rec1->n; ++i) {
for (j = 1; j < rec2->n; ++j) {
isl_poly *poly;
poly = isl_poly_mul(isl_poly_copy(rec2->p[j]),
isl_poly_copy(rec1->p[i]));
res->p[i + j] = isl_poly_sum(res->p[i + j], poly);
if (!res->p[i + j])
goto error;
}
}
isl_poly_free(poly1);
isl_poly_free(poly2);
return &res->poly;
error:
isl_poly_free(poly1);
isl_poly_free(poly2);
isl_poly_free(&res->poly);
return NULL;
}
__isl_give isl_poly *isl_poly_mul(__isl_take isl_poly *poly1,
__isl_take isl_poly *poly2)
{
isl_bool is_zero, is_nan, is_one, is_cst;
if (!poly1 || !poly2)
goto error;
is_nan = isl_poly_is_nan(poly1);
if (is_nan < 0)
goto error;
if (is_nan) {
isl_poly_free(poly2);
return poly1;
}
is_nan = isl_poly_is_nan(poly2);
if (is_nan < 0)
goto error;
if (is_nan) {
isl_poly_free(poly1);
return poly2;
}
is_zero = isl_poly_is_zero(poly1);
if (is_zero < 0)
goto error;
if (is_zero) {
isl_poly_free(poly2);
return poly1;
}
is_zero = isl_poly_is_zero(poly2);
if (is_zero < 0)
goto error;
if (is_zero) {
isl_poly_free(poly1);
return poly2;
}
is_one = isl_poly_is_one(poly1);
if (is_one < 0)
goto error;
if (is_one) {
isl_poly_free(poly1);
return poly2;
}
is_one = isl_poly_is_one(poly2);
if (is_one < 0)
goto error;
if (is_one) {
isl_poly_free(poly2);
return poly1;
}
if (poly1->var < poly2->var)
return isl_poly_mul(poly2, poly1);
if (poly2->var < poly1->var) {
int i;
isl_poly_rec *rec;
isl_bool is_infty;
is_infty = isl_poly_is_infty(poly2);
if (is_infty >= 0 && !is_infty)
is_infty = isl_poly_is_neginfty(poly2);
if (is_infty < 0)
goto error;
if (is_infty) {
isl_ctx *ctx = poly1->ctx;
isl_poly_free(poly1);
isl_poly_free(poly2);
return isl_poly_nan(ctx);
}
poly1 = isl_poly_cow(poly1);
rec = isl_poly_as_rec(poly1);
if (!rec)
goto error;
for (i = 0; i < rec->n; ++i) {
rec->p[i] = isl_poly_mul(rec->p[i],
isl_poly_copy(poly2));
if (!rec->p[i])
goto error;
}
isl_poly_free(poly2);
return poly1;
}
is_cst = isl_poly_is_cst(poly1);
if (is_cst < 0)
goto error;
if (is_cst)
return isl_poly_mul_cst(poly1, poly2);
return isl_poly_mul_rec(poly1, poly2);
error:
isl_poly_free(poly1);
isl_poly_free(poly2);
return NULL;
}
__isl_give isl_poly *isl_poly_pow(__isl_take isl_poly *poly, unsigned power)
{
isl_poly *res;
if (!poly)
return NULL;
if (power == 1)
return poly;
if (power % 2)
res = isl_poly_copy(poly);
else
res = isl_poly_one(poly->ctx);
while (power >>= 1) {
poly = isl_poly_mul(poly, isl_poly_copy(poly));
if (power % 2)
res = isl_poly_mul(res, isl_poly_copy(poly));
}
isl_poly_free(poly);
return res;
}
__isl_give isl_qpolynomial *isl_qpolynomial_alloc(__isl_take isl_space *space,
unsigned n_div, __isl_take isl_poly *poly)
{
struct isl_qpolynomial *qp = NULL;
isl_size total;
total = isl_space_dim(space, isl_dim_all);
if (total < 0 || !poly)
goto error;
if (!isl_space_is_set(space))
isl_die(isl_space_get_ctx(space), isl_error_invalid,
"domain of polynomial should be a set", goto error);
qp = isl_calloc_type(space->ctx, struct isl_qpolynomial);
if (!qp)
goto error;
qp->ref = 1;
qp->div = isl_mat_alloc(space->ctx, n_div, 1 + 1 + total + n_div);
if (!qp->div)
goto error;
qp->dim = space;
qp->poly = poly;
return qp;
error:
isl_space_free(space);
isl_poly_free(poly);
isl_qpolynomial_free(qp);
return NULL;
}
__isl_give isl_qpolynomial *isl_qpolynomial_copy(__isl_keep isl_qpolynomial *qp)
{
if (!qp)
return NULL;
qp->ref++;
return qp;
}
/* Return a copy of the polynomial expression of "qp".
*/
__isl_give isl_poly *isl_qpolynomial_get_poly(__isl_keep isl_qpolynomial *qp)
{
return isl_poly_copy(isl_qpolynomial_peek_poly(qp));
}
/* Return the polynomial expression of "qp".
* This may be either a copy or the polynomial expression itself
* if there is only one reference to "qp".
* This allows the polynomial expression to be modified inplace
* if both the quasi-polynomial and its polynomial expression
* have only a single reference.
* The caller is not allowed to modify "qp" between this call and
* a subsequent call to isl_qpolynomial_restore_poly.
* The only exception is that isl_qpolynomial_free can be called instead.
*/
static __isl_give isl_poly *isl_qpolynomial_take_poly(
__isl_keep isl_qpolynomial *qp)
{
isl_poly *poly;
if (!qp)
return NULL;
if (qp->ref != 1)
return isl_qpolynomial_get_poly(qp);
poly = qp->poly;
qp->poly = NULL;
return poly;
}
/* Set the polynomial expression of "qp" to "space",
* where the polynomial expression of "qp" may be missing
* due to a preceding call to isl_qpolynomial_take_poly.
* However, in this case, "qp" only has a single reference and
* then the call to isl_qpolynomial_cow has no effect.
*/
static __isl_give isl_qpolynomial *isl_qpolynomial_restore_poly(
__isl_keep isl_qpolynomial *qp, __isl_take isl_poly *poly)
{
if (!qp || !poly)
goto error;
if (qp->poly == poly) {
isl_poly_free(poly);
return qp;
}
qp = isl_qpolynomial_cow(qp);
if (!qp)
goto error;
isl_poly_free(qp->poly);
qp->poly = poly;
return qp;
error:
isl_qpolynomial_free(qp);
isl_poly_free(poly);
return NULL;
}
__isl_give isl_qpolynomial *isl_qpolynomial_dup(__isl_keep isl_qpolynomial *qp)
{
isl_poly *poly;
struct isl_qpolynomial *dup;
if (!qp)
return NULL;
poly = isl_qpolynomial_get_poly(qp);
dup = isl_qpolynomial_alloc(isl_space_copy(qp->dim), qp->div->n_row,
poly);
if (!dup)
return NULL;
isl_mat_free(dup->div);
dup->div = isl_qpolynomial_get_local(qp);
if (!dup->div)
goto error;
return dup;
error:
isl_qpolynomial_free(dup);
return NULL;
}
__isl_give isl_qpolynomial *isl_qpolynomial_cow(__isl_take isl_qpolynomial *qp)
{
if (!qp)
return NULL;
if (qp->ref == 1)
return qp;
qp->ref--;
return isl_qpolynomial_dup(qp);
}
__isl_null isl_qpolynomial *isl_qpolynomial_free(
__isl_take isl_qpolynomial *qp)
{
if (!qp)
return NULL;
if (--qp->ref > 0)
return NULL;
isl_space_free(qp->dim);
isl_mat_free(qp->div);
isl_poly_free(qp->poly);
free(qp);
return NULL;
}
__isl_give isl_poly *isl_poly_var_pow(isl_ctx *ctx, int pos, int power)
{
int i;
isl_poly_rec *rec;
isl_poly_cst *cst;
rec = isl_poly_alloc_rec(ctx, pos, 1 + power);
if (!rec)
return NULL;
for (i = 0; i < 1 + power; ++i) {
rec->p[i] = isl_poly_zero(ctx);
if (!rec->p[i])
goto error;
rec->n++;
}
cst = isl_poly_as_cst(rec->p[power]);
isl_int_set_si(cst->n, 1);
return &rec->poly;
error:
isl_poly_free(&rec->poly);
return NULL;
}
/* r array maps original positions to new positions.
*/
static __isl_give isl_poly *reorder(__isl_take isl_poly *poly, int *r)
{
int i;
isl_bool is_cst;
isl_poly_rec *rec;
isl_poly *base;
isl_poly *res;
is_cst = isl_poly_is_cst(poly);
if (is_cst < 0)
return isl_poly_free(poly);
if (is_cst)
return poly;
rec = isl_poly_as_rec(poly);
if (!rec)
goto error;
isl_assert(poly->ctx, rec->n >= 1, goto error);
base = isl_poly_var_pow(poly->ctx, r[poly->var], 1);
res = reorder(isl_poly_copy(rec->p[rec->n - 1]), r);
for (i = rec->n - 2; i >= 0; --i) {
res = isl_poly_mul(res, isl_poly_copy(base));
res = isl_poly_sum(res, reorder(isl_poly_copy(rec->p[i]), r));
}
isl_poly_free(base);
isl_poly_free(poly);
return res;
error:
isl_poly_free(poly);
return NULL;
}
static isl_bool compatible_divs(__isl_keep isl_mat *div1,
__isl_keep isl_mat *div2)
{
int n_row, n_col;
isl_bool equal;
isl_assert(div1->ctx, div1->n_row >= div2->n_row &&
div1->n_col >= div2->n_col,
return isl_bool_error);
if (div1->n_row == div2->n_row)
return isl_mat_is_equal(div1, div2);
n_row = div1->n_row;
n_col = div1->n_col;
div1->n_row = div2->n_row;
div1->n_col = div2->n_col;
equal = isl_mat_is_equal(div1, div2);
div1->n_row = n_row;
div1->n_col = n_col;
return equal;
}
static int cmp_row(__isl_keep isl_mat *div, int i, int j)
{
int li, lj;
li = isl_seq_last_non_zero(div->row[i], div->n_col);
lj = isl_seq_last_non_zero(div->row[j], div->n_col);
if (li != lj)
return li - lj;
return isl_seq_cmp(div->row[i], div->row[j], div->n_col);
}
struct isl_div_sort_info {
isl_mat *div;
int row;
};
static int div_sort_cmp(const void *p1, const void *p2)
{
const struct isl_div_sort_info *i1, *i2;
i1 = (const struct isl_div_sort_info *) p1;
i2 = (const struct isl_div_sort_info *) p2;
return cmp_row(i1->div, i1->row, i2->row);
}
/* Sort divs and remove duplicates.
*/
static __isl_give isl_qpolynomial *sort_divs(__isl_take isl_qpolynomial *qp)
{
int i;
int skip;
int len;
struct isl_div_sort_info *array = NULL;
int *pos = NULL, *at = NULL;
int *reordering = NULL;
isl_size div_pos;
if (!qp)
return NULL;
if (qp->div->n_row <= 1)
return qp;
div_pos = isl_qpolynomial_domain_var_offset(qp, isl_dim_div);
if (div_pos < 0)
return isl_qpolynomial_free(qp);
array = isl_alloc_array(qp->div->ctx, struct isl_div_sort_info,
qp->div->n_row);
pos = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
at = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
len = qp->div->n_col - 2;
reordering = isl_alloc_array(qp->div->ctx, int, len);
if (!array || !pos || !at || !reordering)
goto error;
for (i = 0; i < qp->div->n_row; ++i) {
array[i].div = qp->div;
array[i].row = i;
pos[i] = i;
at[i] = i;
}
qsort(array, qp->div->n_row, sizeof(struct isl_div_sort_info),
div_sort_cmp);
for (i = 0; i < div_pos; ++i)
reordering[i] = i;
for (i = 0; i < qp->div->n_row; ++i) {
if (pos[array[i].row] == i)
continue;
qp->div = isl_mat_swap_rows(qp->div, i, pos[array[i].row]);
pos[at[i]] = pos[array[i].row];
at[pos[array[i].row]] = at[i];
at[i] = array[i].row;
pos[array[i].row] = i;
}
skip = 0;
for (i = 0; i < len - div_pos; ++i) {
if (i > 0 &&
isl_seq_eq(qp->div->row[i - skip - 1],
qp->div->row[i - skip], qp->div->n_col)) {
qp->div = isl_mat_drop_rows(qp->div, i - skip, 1);
isl_mat_col_add(qp->div, 2 + div_pos + i - skip - 1,
2 + div_pos + i - skip);
qp->div = isl_mat_drop_cols(qp->div,
2 + div_pos + i - skip, 1);
skip++;
}
reordering[div_pos + array[i].row] = div_pos + i - skip;
}
qp->poly = reorder(qp->poly, reordering);
if (!qp->poly || !qp->div)
goto error;
free(at);
free(pos);
free(array);
free(reordering);
return qp;
error:
free(at);
free(pos);
free(array);
free(reordering);
isl_qpolynomial_free(qp);
return NULL;
}
static __isl_give isl_poly *expand(__isl_take isl_poly *poly, int *exp,
int first)
{
int i;
isl_bool is_cst;
isl_poly_rec *rec;
is_cst = isl_poly_is_cst(poly);
if (is_cst < 0)
return isl_poly_free(poly);
if (is_cst)
return poly;
if (poly->var < first)
return poly;
if (exp[poly->var - first] == poly->var - first)
return poly;
poly = isl_poly_cow(poly);
if (!poly)
goto error;
poly->var = exp[poly->var - first] + first;
rec = isl_poly_as_rec(poly);
if (!rec)
goto error;
for (i = 0; i < rec->n; ++i) {
rec->p[i] = expand(rec->p[i], exp, first);
if (!rec->p[i])
goto error;
}
return poly;
error:
isl_poly_free(poly);
return NULL;
}
static __isl_give isl_qpolynomial *with_merged_divs(
__isl_give isl_qpolynomial *(*fn)(__isl_take isl_qpolynomial *qp1,
__isl_take isl_qpolynomial *qp2),
__isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2)
{
int *exp1 = NULL;
int *exp2 = NULL;
isl_mat *div = NULL;
int n_div1, n_div2;
qp1 = isl_qpolynomial_cow(qp1);
qp2 = isl_qpolynomial_cow(qp2);
if (!qp1 || !qp2)
goto error;
isl_assert(qp1->div->ctx, qp1->div->n_row >= qp2->div->n_row &&
qp1->div->n_col >= qp2->div->n_col, goto error);
n_div1 = qp1->div->n_row;
n_div2 = qp2->div->n_row;
exp1 = isl_alloc_array(qp1->div->ctx, int, n_div1);
exp2 = isl_alloc_array(qp2->div->ctx, int, n_div2);
if ((n_div1 && !exp1) || (n_div2 && !exp2))
goto error;
div = isl_merge_divs(qp1->div, qp2->div, exp1, exp2);
if (!div)
goto error;
isl_mat_free(qp1->div);
qp1->div = isl_mat_copy(div);
isl_mat_free(qp2->div);
qp2->div = isl_mat_copy(div);
qp1->poly = expand(qp1->poly, exp1, div->n_col - div->n_row - 2);
qp2->poly = expand(qp2->poly, exp2, div->n_col - div->n_row - 2);
if (!qp1->poly || !qp2->poly)
goto error;
isl_mat_free(div);
free(exp1);
free(exp2);
return fn(qp1, qp2);
error:
isl_mat_free(div);
free(exp1);
free(exp2);
isl_qpolynomial_free(qp1);
isl_qpolynomial_free(qp2);
return NULL;
}
__isl_give isl_qpolynomial *isl_qpolynomial_add(__isl_take isl_qpolynomial *qp1,
__isl_take isl_qpolynomial *qp2)
{
isl_bool compatible;
isl_poly *poly;
if (isl_qpolynomial_check_equal_space(qp1, qp2) < 0)
goto error;
if (qp1->div->n_row < qp2->div->n_row)
return isl_qpolynomial_add(qp2, qp1);
compatible = compatible_divs(qp1->div, qp2->div);
if (compatible < 0)
goto error;
if (!compatible)
return with_merged_divs(isl_qpolynomial_add, qp1, qp2);
poly = isl_qpolynomial_take_poly(qp1);
poly = isl_poly_sum(poly, isl_qpolynomial_get_poly(qp2));
qp1 = isl_qpolynomial_restore_poly(qp1, poly);
isl_qpolynomial_free(qp2);
return qp1;
error:
isl_qpolynomial_free(qp1);
isl_qpolynomial_free(qp2);
return NULL;
}
__isl_give isl_qpolynomial *isl_qpolynomial_add_on_domain(
__isl_keep isl_set *dom,
__isl_take isl_qpolynomial *qp1,
__isl_take isl_qpolynomial *qp2)
{
qp1 = isl_qpolynomial_add(qp1, qp2);
qp1 = isl_qpolynomial_gist(qp1, isl_set_copy(dom));
return qp1;
}
__isl_give isl_qpolynomial *isl_qpolynomial_sub(__isl_take isl_qpolynomial *qp1,
__isl_take isl_qpolynomial *qp2)
{
return isl_qpolynomial_add(qp1, isl_qpolynomial_neg(qp2));
}
__isl_give isl_qpolynomial *isl_qpolynomial_add_isl_int(
__isl_take isl_qpolynomial *qp, isl_int v)
{
isl_poly *poly;
if (isl_int_is_zero(v))
return qp;
poly = isl_qpolynomial_take_poly(qp);
poly = isl_poly_add_isl_int(poly, v);
qp = isl_qpolynomial_restore_poly(qp, poly);
return qp;
}
__isl_give isl_qpolynomial *isl_qpolynomial_neg(__isl_take isl_qpolynomial *qp)
{
if (!qp)
return NULL;
return isl_qpolynomial_mul_isl_int(qp, qp->dim->ctx->negone);
}
__isl_give isl_qpolynomial *isl_qpolynomial_mul_isl_int(
__isl_take isl_qpolynomial *qp, isl_int v)
{
isl_poly *poly;
if (isl_int_is_one(v))
return qp;
if (qp && isl_int_is_zero(v)) {
isl_qpolynomial *zero;
zero = isl_qpolynomial_zero_on_domain(isl_space_copy(qp->dim));
isl_qpolynomial_free(qp);
return zero;
}
poly = isl_qpolynomial_take_poly(qp);
poly = isl_poly_mul_isl_int(poly, v);
qp = isl_qpolynomial_restore_poly(qp, poly);
return qp;
}
__isl_give isl_qpolynomial *isl_qpolynomial_scale(
__isl_take isl_qpolynomial *qp, isl_int v)
{
return isl_qpolynomial_mul_isl_int(qp, v);
}
/* Multiply "qp" by "v".
*/
__isl_give isl_qpolynomial *isl_qpolynomial_scale_val(
__isl_take isl_qpolynomial *qp, __isl_take isl_val *v)
{
isl_poly *poly;
if (!qp || !v)
goto error;
if (!isl_val_is_rat(v))
isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
"expecting rational factor", goto error);
if (isl_val_is_one(v)) {
isl_val_free(v);
return qp;
}
if (isl_val_is_zero(v)) {
isl_space *space;
space = isl_qpolynomial_get_domain_space(qp);
isl_qpolynomial_free(qp);
isl_val_free(v);
return isl_qpolynomial_zero_on_domain(space);
}
poly = isl_qpolynomial_take_poly(qp);
poly = isl_poly_scale_val(poly, v);
qp = isl_qpolynomial_restore_poly(qp, poly);
isl_val_free(v);
return qp;
error:
isl_val_free(v);
isl_qpolynomial_free(qp);
return NULL;
}
/* Divide "qp" by "v".
*/
__isl_give isl_qpolynomial *isl_qpolynomial_scale_down_val(
__isl_take isl_qpolynomial *qp, __isl_take isl_val *v)
{
if (!qp || !v)
goto error;
if (!isl_val_is_rat(v))
isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
"expecting rational factor", goto error);
if (isl_val_is_zero(v))
isl_die(isl_val_get_ctx(v), isl_error_invalid,
"cannot scale down by zero", goto error);
return isl_qpolynomial_scale_val(qp, isl_val_inv(v));
error:
isl_val_free(v);
isl_qpolynomial_free(qp);
return NULL;
}
__isl_give isl_qpolynomial *isl_qpolynomial_mul(__isl_take isl_qpolynomial *qp1,
__isl_take isl_qpolynomial *qp2)
{
isl_bool compatible;
isl_poly *poly;
if (isl_qpolynomial_check_equal_space(qp1, qp2) < 0)
goto error;
if (qp1->div->n_row < qp2->div->n_row)
return isl_qpolynomial_mul(qp2, qp1);
compatible = compatible_divs(qp1->div, qp2->div);
if (compatible < 0)
goto error;
if (!compatible)
return with_merged_divs(isl_qpolynomial_mul, qp1, qp2);
poly = isl_qpolynomial_take_poly(qp1);
poly = isl_poly_mul(poly, isl_qpolynomial_get_poly(qp2));
qp1 = isl_qpolynomial_restore_poly(qp1, poly);
isl_qpolynomial_free(qp2);
return qp1;
error:
isl_qpolynomial_free(qp1);
isl_qpolynomial_free(qp2);
return NULL;
}
__isl_give isl_qpolynomial *isl_qpolynomial_pow(__isl_take isl_qpolynomial *qp,
unsigned power)
{
isl_poly *poly;
poly = isl_qpolynomial_take_poly(qp);
poly = isl_poly_pow(poly, power);
qp = isl_qpolynomial_restore_poly(qp, poly);
return qp;
}
__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow(
__isl_take isl_pw_qpolynomial *pwqp, unsigned power)
{
int i;
if (power == 1)
return pwqp;
pwqp = isl_pw_qpolynomial_cow(pwqp);
if (!pwqp)
return NULL;
for (i = 0; i < pwqp->n; ++i) {
pwqp->p[i].qp = isl_qpolynomial_pow(pwqp->p[i].qp, power);
if (!pwqp->p[i].qp)
return isl_pw_qpolynomial_free(pwqp);
}
return pwqp;
}
__isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain(
__isl_take isl_space *domain)
{
if (!domain)
return NULL;
return isl_qpolynomial_alloc(domain, 0, isl_poly_zero(domain->ctx));
}
__isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain(
__isl_take isl_space *domain)
{
if (!domain)
return NULL;
return isl_qpolynomial_alloc(domain, 0, isl_poly_one(domain->ctx));
}
__isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain(
__isl_take isl_space *domain)
{
if (!domain)
return NULL;
return isl_qpolynomial_alloc(domain, 0, isl_poly_infty(domain->ctx));
}
__isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain(
__isl_take isl_space *domain)
{
if (!domain)
return NULL;
return isl_qpolynomial_alloc(domain, 0, isl_poly_neginfty(domain->ctx));
}
__isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain(
__isl_take isl_space *domain)
{
if (!domain)
return NULL;
return isl_qpolynomial_alloc(domain, 0, isl_poly_nan(domain->ctx));
}
__isl_give isl_qpolynomial *isl_qpolynomial_cst_on_domain(
__isl_take isl_space *domain,
isl_int v)
{
struct isl_qpolynomial *qp;
isl_poly_cst *cst;
qp = isl_qpolynomial_zero_on_domain(domain);
if (!qp)
return NULL;
cst = isl_poly_as_cst(qp->poly);
isl_int_set(cst->n, v);
return qp;
}
isl_bool isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,
isl_int *n, isl_int *d)
{
isl_bool is_cst;
isl_poly *poly;
isl_poly_cst *cst;
poly = isl_qpolynomial_peek_poly(qp);
is_cst = isl_poly_is_cst(poly);
if (is_cst < 0 || !is_cst)
return is_cst;
cst = isl_poly_as_cst(poly);
if (!cst)
return isl_bool_error;
if (n)
isl_int_set(*n, cst->n);
if (d)
isl_int_set(*d, cst->d);
return isl_bool_true;
}
/* Return the constant term of "poly".
*/
static __isl_give isl_val *isl_poly_get_constant_val(__isl_keep isl_poly *poly)
{
isl_bool is_cst;
isl_poly_cst *cst;
if (!poly)
return NULL;
while ((is_cst = isl_poly_is_cst(poly)) == isl_bool_false) {
isl_poly_rec *rec;
rec = isl_poly_as_rec(poly);
if (!rec)
return NULL;
poly = rec->p[0];
}
if (is_cst < 0)
return NULL;
cst = isl_poly_as_cst(poly);
if (!cst)
return NULL;
return isl_val_rat_from_isl_int(cst->poly.ctx, cst->n, cst->d);
}
/* Return the constant term of "qp".
*/
__isl_give isl_val *isl_qpolynomial_get_constant_val(
__isl_keep isl_qpolynomial *qp)
{
return isl_poly_get_constant_val(isl_qpolynomial_peek_poly(qp));
}
isl_bool isl_poly_is_affine(__isl_keep isl_poly *poly)
{
isl_bool is_cst;
isl_poly_rec *rec;
if (!poly)
return isl_bool_error;
if (poly->var < 0)
return isl_bool_true;
rec = isl_poly_as_rec(poly);
if (!rec)
return isl_bool_error;
if (rec->n > 2)
return isl_bool_false;
isl_assert(poly->ctx, rec->n > 1, return isl_bool_error);
is_cst = isl_poly_is_cst(rec->p[1]);
if (is_cst < 0 || !is_cst)
return is_cst;
return isl_poly_is_affine(rec->p[0]);
}
/* Can "qp" be converted to an isl_aff?
* That is, does it represent a quasi-affine expression?
*/
isl_bool isl_qpolynomial_isa_aff(__isl_keep isl_qpolynomial *qp)
{
return isl_poly_is_affine(isl_qpolynomial_peek_poly(qp));
}
isl_bool isl_qpolynomial_is_affine(__isl_keep isl_qpolynomial *qp)
{
if (!qp)
return isl_bool_error;
if (qp->div->n_row > 0)
return isl_bool_false;
return isl_qpolynomial_isa_aff(qp);
}
static void update_coeff(__isl_keep isl_vec *aff,
__isl_keep isl_poly_cst *cst, int pos)
{
isl_int gcd;
isl_int f;
if (isl_int_is_zero(cst->n))
return;
isl_int_init(gcd);
isl_int_init(f);
isl_int_gcd(gcd, cst->d, aff->el[0]);
isl_int_divexact(f, cst->d, gcd);
isl_int_divexact(gcd, aff->el[0], gcd);
isl_seq_scale(aff->el, aff->el, f, aff->size);
isl_int_mul(aff->el[1 + pos], gcd, cst->n);
isl_int_clear(gcd);
isl_int_clear(f);
}
int isl_poly_update_affine(__isl_keep isl_poly *poly, __isl_keep isl_vec *aff)
{
isl_poly_cst *cst;
isl_poly_rec *rec;
if (!poly || !aff)
return -1;
if (poly->var < 0) {
isl_poly_cst *cst;
cst = isl_poly_as_cst(poly);
if (!cst)
return -1;
update_coeff(aff, cst, 0);
return 0;
}
rec = isl_poly_as_rec(poly);
if (!rec)
return -1;
isl_assert(poly->ctx, rec->n == 2, return -1);
cst = isl_poly_as_cst(rec->p[1]);
if (!cst)
return -1;
update_coeff(aff, cst, 1 + poly->var);
return isl_poly_update_affine(rec->p[0], aff);
}
__isl_give isl_vec *isl_qpolynomial_extract_affine(
__isl_keep isl_qpolynomial *qp)
{
isl_vec *aff;
isl_size d;
d = isl_qpolynomial_domain_dim(qp, isl_dim_all);
if (d < 0)
return NULL;
aff = isl_vec_alloc(qp->div->ctx, 2 + d);
if (!aff)
return NULL;
isl_seq_clr(aff->el + 1, 1 + d);
isl_int_set_si(aff->el[0], 1);
if (isl_poly_update_affine(qp->poly, aff) < 0)
goto error;
return aff;
error:
isl_vec_free(aff);
return NULL;
}
/* Compare two quasi-polynomials.
*
* Return -1 if "qp1" is "smaller" than "qp2", 1 if "qp1" is "greater"
* than "qp2" and 0 if they are equal.
*/
int isl_qpolynomial_plain_cmp(__isl_keep isl_qpolynomial *qp1,
__isl_keep isl_qpolynomial *qp2)
{
int cmp;
if (qp1 == qp2)
return 0;
if (!qp1)
return -1;
if (!qp2)
return 1;
cmp = isl_space_cmp(qp1->dim, qp2->dim);
if (cmp != 0)
return cmp;
cmp = isl_local_cmp(qp1->div, qp2->div);
if (cmp != 0)
return cmp;
return isl_poly_plain_cmp(qp1->poly, qp2->poly);
}
/* Is "qp1" obviously equal to "qp2"?
*
* NaN is not equal to anything, not even to another NaN.
*/
isl_bool isl_qpolynomial_plain_is_equal(__isl_keep isl_qpolynomial *qp1,
__isl_keep isl_qpolynomial *qp2)
{
isl_bool equal;
if (!qp1 || !qp2)
return isl_bool_error;
if (isl_qpolynomial_is_nan(qp1) || isl_qpolynomial_is_nan(qp2))
return isl_bool_false;
equal = isl_space_is_equal(qp1->dim, qp2->dim);
if (equal < 0 || !equal)
return equal;
equal = isl_mat_is_equal(qp1->div, qp2->div);
if (equal < 0 || !equal)
return equal;
return isl_poly_is_equal(qp1->poly, qp2->poly);
}
static isl_stat poly_update_den(__isl_keep isl_poly *poly, isl_int *d)
{
int i;
isl_bool is_cst;
isl_poly_rec *rec;
is_cst = isl_poly_is_cst(poly);
if (is_cst < 0)
return isl_stat_error;
if (is_cst) {
isl_poly_cst *cst;
cst = isl_poly_as_cst(poly);
if (!cst)
return isl_stat_error;
isl_int_lcm(*d, *d, cst->d);
return isl_stat_ok;
}
rec = isl_poly_as_rec(poly);
if (!rec)
return isl_stat_error;
for (i = 0; i < rec->n; ++i)
poly_update_den(rec->p[i], d);
return isl_stat_ok;
}
__isl_give isl_val *isl_qpolynomial_get_den(__isl_keep isl_qpolynomial *qp)
{
isl_val *d;
if (!qp)
return NULL;
d = isl_val_one(isl_qpolynomial_get_ctx(qp));
if (!d)
return NULL;
if (poly_update_den(qp->poly, &d->n) < 0)
return isl_val_free(d);
return d;
}
__isl_give isl_qpolynomial *isl_qpolynomial_var_pow_on_domain(
__isl_take isl_space *domain, int pos, int power)
{
struct isl_ctx *ctx;
if (!domain)
return NULL;
ctx = domain->ctx;
return isl_qpolynomial_alloc(domain, 0,
isl_poly_var_pow(ctx, pos, power));
}
__isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain(
__isl_take isl_space *domain, enum isl_dim_type type, unsigned pos)
{
isl_size off;
if (isl_space_check_is_set(domain ) < 0)
goto error;
if (isl_space_check_range(domain, type, pos, 1) < 0)
goto error;
off = isl_space_offset(domain, type);
if (off < 0)
goto error;
return isl_qpolynomial_var_pow_on_domain(domain, off + pos, 1);
error:
isl_space_free(domain);
return NULL;
}
__isl_give isl_poly *isl_poly_subs(__isl_take isl_poly *poly,
unsigned first, unsigned n, __isl_keep isl_poly **subs)
{
int i;
isl_bool is_cst;
isl_poly_rec *rec;
isl_poly *base, *res;
is_cst = isl_poly_is_cst(poly);
if (is_cst < 0)
return isl_poly_free(poly);
if (is_cst)
return poly;
if (poly->var < first)
return poly;
rec = isl_poly_as_rec(poly);
if (!rec)
goto error;
isl_assert(poly->ctx, rec->n >= 1, goto error);
if (poly->var >= first + n)
base = isl_poly_var_pow(poly->ctx, poly->var, 1);
else
base = isl_poly_copy(subs[poly->var - first]);
res = isl_poly_subs(isl_poly_copy(rec->p[rec->n - 1]), first, n, subs);
for (i = rec->n - 2; i >= 0; --i) {
isl_poly *t;
t = isl_poly_subs(isl_poly_copy(rec->p[i]), first, n, subs);
res = isl_poly_mul(res, isl_poly_copy(base));
res = isl_poly_sum(res, t);
}
isl_poly_free(base);
isl_poly_free(poly);
return res;
error:
isl_poly_free(poly);
return NULL;
}
__isl_give isl_poly *isl_poly_from_affine(isl_ctx *ctx, isl_int *f,
isl_int denom, unsigned len)
{
int i;
isl_poly *poly;
isl_assert(ctx, len >= 1, return NULL);
poly = isl_poly_rat_cst(ctx, f[0], denom);
for (i = 0; i < len - 1; ++i) {
isl_poly *t;
isl_poly *c;
if (isl_int_is_zero(f[1 + i]))
continue;
c = isl_poly_rat_cst(ctx, f[1 + i], denom);
t = isl_poly_var_pow(ctx, i, 1);
t = isl_poly_mul(c, t);
poly = isl_poly_sum(poly, t);
}
return poly;
}
/* Remove common factor of non-constant terms and denominator.
*/
static void normalize_div(__isl_keep isl_qpolynomial *qp, int div)
{
isl_ctx *ctx = qp->div->ctx;
unsigned total = qp->div->n_col - 2;
isl_seq_gcd(qp->div->row[div] + 2, total, &ctx->normalize_gcd);
isl_int_gcd(ctx->normalize_gcd,
ctx->normalize_gcd, qp->div->row[div][0]);
if (isl_int_is_one(ctx->normalize_gcd))
return;
isl_seq_scale_down(qp->div->row[div] + 2, qp->div->row[div] + 2,
ctx->normalize_gcd, total);
isl_int_divexact(qp->div->row[div][0], qp->div->row[div][0],
ctx->normalize_gcd);
isl_int_fdiv_q(qp->div->row[div][1], qp->div->row[div][1],
ctx->normalize_gcd);
}
/* Replace the integer division identified by "div" by the polynomial "s".
* The integer division is assumed not to appear in the definition
* of any other integer divisions.
*/
static __isl_give isl_qpolynomial *substitute_div(
__isl_take isl_qpolynomial *qp, int div, __isl_take isl_poly *s)
{
int i;
isl_size div_pos;
int *reordering;
isl_ctx *ctx;
if (!qp || !s)
goto error;
qp = isl_qpolynomial_cow(qp);
if (!qp)
goto error;
div_pos = isl_qpolynomial_domain_var_offset(qp, isl_dim_div);
if (div_pos < 0)
goto error;
qp->poly = isl_poly_subs(qp->poly, div_pos + div, 1, &s);
if (!qp->poly)
goto error;
ctx = isl_qpolynomial_get_ctx(qp);
reordering = isl_alloc_array(ctx, int, div_pos + qp->div->n_row);
if (!reordering)
goto error;
for (i = 0; i < div_pos + div; ++i)
reordering[i] = i;
for (i = div_pos + div + 1; i < div_pos + qp->div->n_row; ++i)
reordering[i] = i - 1;
qp->div = isl_mat_drop_rows(qp->div, div, 1);
qp->div = isl_mat_drop_cols(qp->div, 2 + div_pos + div, 1);
qp->poly = reorder(qp->poly, reordering);
free(reordering);
if (!qp->poly || !qp->div)
goto error;
isl_poly_free(s);
return qp;
error:
isl_qpolynomial_free(qp);
isl_poly_free(s);
return NULL;
}
/* Replace all integer divisions [e/d] that turn out to not actually be integer
* divisions because d is equal to 1 by their definition, i.e., e.
*/
static __isl_give isl_qpolynomial *substitute_non_divs(
__isl_take isl_qpolynomial *qp)
{
int i, j;
isl_size div_pos;
isl_poly *s;
div_pos = isl_qpolynomial_domain_var_offset(qp, isl_dim_div);
if (div_pos < 0)
return isl_qpolynomial_free(qp);
for (i = 0; qp && i < qp->div->n_row; ++i) {
if (!isl_int_is_one(qp->div->row[i][0]))
continue;
for (j = i + 1; j < qp->div->n_row; ++j) {
if (isl_int_is_zero(qp->div->row[j][2 + div_pos + i]))
continue;
isl_seq_combine(qp->div->row[j] + 1,
qp->div->ctx->one, qp->div->row[j] + 1,
qp->div->row[j][2 + div_pos + i],
qp->div->row[i] + 1, 1 + div_pos + i);
isl_int_set_si(qp->div->row[j][2 + div_pos + i], 0);
normalize_div(qp, j);
}
s = isl_poly_from_affine(qp->dim->ctx, qp->div->row[i] + 1,
qp->div->row[i][0], qp->div->n_col - 1);
qp = substitute_div(qp, i, s);
--i;
}
return qp;
}
/* Reduce the coefficients of div "div" to lie in the interval [0, d-1],
* with d the denominator. When replacing the coefficient e of x by
* d * frac(e/d) = e - d * floor(e/d), we are subtracting d * floor(e/d) * x
* inside the division, so we need to add floor(e/d) * x outside.
* That is, we replace q by q' + floor(e/d) * x and we therefore need
* to adjust the coefficient of x in each later div that depends on the
* current div "div" and also in the affine expressions in the rows of "mat"
* (if they too depend on "div").
*/
static void reduce_div(__isl_keep isl_qpolynomial *qp, int div,
__isl_keep isl_mat **mat)
{
int i, j;
isl_int v;
unsigned total = qp->div->n_col - qp->div->n_row - 2;
isl_int_init(v);
for (i = 0; i < 1 + total + div; ++i) {
if (isl_int_is_nonneg(qp->div->row[div][1 + i]) &&
isl_int_lt(qp->div->row[div][1 + i], qp->div->row[div][0]))
continue;
isl_int_fdiv_q(v, qp->div->row[div][1 + i], qp->div->row[div][0]);
isl_int_fdiv_r(qp->div->row[div][1 + i],
qp->div->row[div][1 + i], qp->div->row[div][0]);
*mat = isl_mat_col_addmul(*mat, i, v, 1 + total + div);
for (j = div + 1; j < qp->div->n_row; ++j) {
if (isl_int_is_zero(qp->div->row[j][2 + total + div]))
continue;
isl_int_addmul(qp->div->row[j][1 + i],
v, qp->div->row[j][2 + total + div]);
}
}
isl_int_clear(v);
}
/* Check if the last non-zero coefficient is bigger that half of the
* denominator. If so, we will invert the div to further reduce the number
* of distinct divs that may appear.
* If the last non-zero coefficient is exactly half the denominator,
* then we continue looking for earlier coefficients that are bigger
* than half the denominator.
*/
static int needs_invert(__isl_keep isl_mat *div, int row)
{
int i;
int cmp;
for (i = div->n_col - 1; i >= 1; --i) {
if (isl_int_is_zero(div->row[row][i]))
continue;
isl_int_mul_ui(div->row[row][i], div->row[row][i], 2);
cmp = isl_int_cmp(div->row[row][i], div->row[row][0]);
isl_int_divexact_ui(div->row[row][i], div->row[row][i], 2);
if (cmp)
return cmp > 0;
if (i == 1)
return 1;
}
return 0;
}
/* Replace div "div" q = [e/d] by -[(-e+(d-1))/d].
* We only invert the coefficients of e (and the coefficient of q in
* later divs and in the rows of "mat"). After calling this function, the
* coefficients of e should be reduced again.
*/
static void invert_div(__isl_keep isl_qpolynomial *qp, int div,
__isl_keep isl_mat **mat)
{
unsigned total = qp->div->n_col - qp->div->n_row - 2;
isl_seq_neg(qp->div->row[div] + 1,
qp->div->row[div] + 1, qp->div->n_col - 1);
isl_int_sub_ui(qp->div->row[div][1], qp->div->row[div][1], 1);
isl_int_add(qp->div->row[div][1],
qp->div->row[div][1], qp->div->row[div][0]);
*mat = isl_mat_col_neg(*mat, 1 + total + div);
isl_mat_col_mul(qp->div, 2 + total + div,
qp->div->ctx->negone, 2 + total + div);
}
/* Reduce all divs of "qp" to have coefficients
* in the interval [0, d-1], with d the denominator and such that the
* last non-zero coefficient that is not equal to d/2 is smaller than d/2.
* The modifications to the integer divisions need to be reflected
* in the factors of the polynomial that refer to the original
* integer divisions. To this end, the modifications are collected
* as a set of affine expressions and then plugged into the polynomial.
*
* After the reduction, some divs may have become redundant or identical,
* so we call substitute_non_divs and sort_divs. If these functions
* eliminate divs or merge two or more divs into one, the coefficients
* of the enclosing divs may have to be reduced again, so we call
* ourselves recursively if the number of divs decreases.
*/
static __isl_give isl_qpolynomial *reduce_divs(__isl_take isl_qpolynomial *qp)
{
int i;
isl_ctx *ctx;
isl_mat *mat;
isl_poly **s;
unsigned o_div;
isl_size n_div, total, new_n_div;
total = isl_qpolynomial_domain_dim(qp, isl_dim_all);
n_div = isl_qpolynomial_domain_dim(qp, isl_dim_div);
o_div = isl_qpolynomial_domain_offset(qp, isl_dim_div);
if (total < 0 || n_div < 0)
return isl_qpolynomial_free(qp);
ctx = isl_qpolynomial_get_ctx(qp);
mat = isl_mat_zero(ctx, n_div, 1 + total);
for (i = 0; i < n_div; ++i)
mat = isl_mat_set_element_si(mat, i, o_div + i, 1);
for (i = 0; i < qp->div->n_row; ++i) {
normalize_div(qp, i);
reduce_div(qp, i, &mat);
if (needs_invert(qp->div, i)) {
invert_div(qp, i, &mat);
reduce_div(qp, i, &mat);
}
}
if (!mat)
goto error;
s = isl_alloc_array(ctx, struct isl_poly *, n_div);
if (n_div && !s)
goto error;
for (i = 0; i < n_div; ++i)
s[i] = isl_poly_from_affine(ctx, mat->row[i], ctx->one,
1 + total);
qp->poly = isl_poly_subs(qp->poly, o_div - 1, n_div, s);
for (i = 0; i < n_div; ++i)
isl_poly_free(s[i]);
free(s);
if (!qp->poly)
goto error;
isl_mat_free(mat);
qp = substitute_non_divs(qp);
qp = sort_divs(qp);
new_n_div = isl_qpolynomial_domain_dim(qp, isl_dim_div);
if (new_n_div < 0)
return isl_qpolynomial_free(qp);
if (new_n_div < n_div)
return reduce_divs(qp);
return qp;
error:
isl_qpolynomial_free(qp);
isl_mat_free(mat);
return NULL;
}
__isl_give isl_qpolynomial *isl_qpolynomial_rat_cst_on_domain(
__isl_take isl_space *domain, const isl_int n, const isl_int d)
{
struct isl_qpolynomial *qp;
isl_poly_cst *cst;
qp = isl_qpolynomial_zero_on_domain(domain);
if (!qp)
return NULL;
cst = isl_poly_as_cst(qp->poly);
isl_int_set(cst->n, n);
isl_int_set(cst->d, d);
return qp;
}
/* Return an isl_qpolynomial that is equal to "val" on domain space "domain".
*/
__isl_give isl_qpolynomial *isl_qpolynomial_val_on_domain(
__isl_take isl_space *domain, __isl_take isl_val *val)
{
isl_qpolynomial *qp;
isl_poly_cst *cst;
qp = isl_qpolynomial_zero_on_domain(domain);
if (!qp || !val)
goto error;
cst = isl_poly_as_cst(qp->poly);
isl_int_set(cst->n, val->n);
isl_int_set(cst->d, val->d);
isl_val_free(val);
return qp;
error:
isl_val_free(val);
isl_qpolynomial_free(qp);
return NULL;
}
static isl_stat poly_set_active(__isl_keep isl_poly *poly, int *active, int d)
{
isl_bool is_cst;
isl_poly_rec *rec;
int i;
is_cst = isl_poly_is_cst(poly);
if (is_cst < 0)
return isl_stat_error;
if (is_cst)
return isl_stat_ok;
if (poly->var < d)
active[poly->var] = 1;
rec = isl_poly_as_rec(poly);
for (i = 0; i < rec->n; ++i)
if (poly_set_active(rec->p[i], active, d) < 0)
return isl_stat_error;
return isl_stat_ok;
}
static isl_stat set_active(__isl_keep isl_qpolynomial *qp, int *active)
{
int i, j;
isl_size d;
isl_space *space;
space = isl_qpolynomial_peek_domain_space(qp);
d = isl_space_dim(space, isl_dim_all);
if (d < 0 || !active)
return isl_stat_error;
for (i = 0; i < d; ++i)
for (j = 0; j < qp->div->n_row; ++j) {
if (isl_int_is_zero(qp->div->row[j][2 + i]))
continue;
active[i] = 1;
break;
}
return poly_set_active(isl_qpolynomial_peek_poly(qp), active, d);
}
#undef TYPE
#define TYPE isl_qpolynomial
static
#include "check_type_range_templ.c"
isl_bool isl_qpolynomial_involves_dims(__isl_keep isl_qpolynomial *qp,
enum isl_dim_type type, unsigned first, unsigned n)
{
int i;
int *active = NULL;
isl_bool involves = isl_bool_false;
isl_size offset;
isl_size d;
isl_space *space;
if (!qp)
return isl_bool_error;
if (n == 0)
return isl_bool_false;
if (isl_qpolynomial_check_range(qp, type, first, n) < 0)
return isl_bool_error;
isl_assert(qp->dim->ctx, type == isl_dim_param ||
type == isl_dim_in, return isl_bool_error);
space = isl_qpolynomial_peek_domain_space(qp);
d = isl_space_dim(space, isl_dim_all);
if (d < 0)
return isl_bool_error;
active = isl_calloc_array(qp->dim->ctx, int, d);
if (set_active(qp, active) < 0)
goto error;
offset = isl_qpolynomial_domain_var_offset(qp, domain_type(type));
if (offset < 0)
goto error;
first += offset;
for (i = 0; i < n; ++i)
if (active[first + i]) {
involves = isl_bool_true;
break;
}
free(active);
return involves;
error:
free(active);
return isl_bool_error;
}
/* Remove divs that do not appear in the quasi-polynomial, nor in any
* of the divs that do appear in the quasi-polynomial.
*/
static __isl_give isl_qpolynomial *remove_redundant_divs(
__isl_take isl_qpolynomial *qp)
{
int i, j;
isl_size div_pos;
int len;
int skip;
int *active = NULL;
int *reordering = NULL;
int redundant = 0;
int n_div;
isl_ctx *ctx;
if (!qp)
return NULL;
if (qp->div->n_row == 0)
return qp;
div_pos = isl_qpolynomial_domain_var_offset(qp, isl_dim_div);
if (div_pos < 0)
return isl_qpolynomial_free(qp);
len = qp->div->n_col - 2;
ctx = isl_qpolynomial_get_ctx(qp);
active = isl_calloc_array(ctx, int, len);
if (!active)
goto error;
if (poly_set_active(isl_qpolynomial_peek_poly(qp), active, len) < 0)
goto error;
for (i = qp->div->n_row - 1; i >= 0; --i) {
if (!active[div_pos + i]) {
redundant = 1;
continue;
}
for (j = 0; j < i; ++j) {
if (isl_int_is_zero(qp->div->row[i][2 + div_pos + j]))
continue;
active[div_pos + j] = 1;
break;
}
}
if (!redundant) {
free(active);
return qp;
}
reordering = isl_alloc_array(qp->div->ctx, int, len);
if (!reordering)
goto error;
for (i = 0; i < div_pos; ++i)
reordering[i] = i;
skip = 0;
n_div = qp->div->n_row;
for (i = 0; i < n_div; ++i) {
if (!active[div_pos + i]) {
qp->div = isl_mat_drop_rows(qp->div, i - skip, 1);
qp->div = isl_mat_drop_cols(qp->div,
2 + div_pos + i - skip, 1);
skip++;
}
reordering[div_pos + i] = div_pos + i - skip;
}
qp->poly = reorder(qp->poly, reordering);
if (!qp->poly || !qp->div)
goto error;
free(active);
free(reordering);
return qp;
error:
free(active);
free(reordering);
isl_qpolynomial_free(qp);
return NULL;
}
__isl_give isl_poly *isl_poly_drop(__isl_take isl_poly *poly,
unsigned first, unsigned n)
{
int i;
isl_poly_rec *rec;
if (!poly)
return NULL;
if (n == 0 || poly->var < 0 || poly->var < first)
return poly;
if (poly->var < first + n) {
poly = replace_by_constant_term(poly);
return isl_poly_drop(poly, first, n);
}
poly = isl_poly_cow(poly);
if (!poly)
return NULL;
poly->var -= n;
rec = isl_poly_as_rec(poly);
if (!rec)
goto error;
for (i = 0; i < rec->n; ++i) {
rec->p[i] = isl_poly_drop(rec->p[i], first, n);
if (!rec->p[i])
goto error;
}
return poly;
error:
isl_poly_free(poly);
return NULL;
}
__isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
__isl_take isl_qpolynomial *qp,
enum isl_dim_type type, unsigned pos, const char *s)
{
isl_space *space;
if (!qp)
return NULL;
if (type == isl_dim_out)
isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
"cannot set name of output/set dimension",
return isl_qpolynomial_free(qp));
type = domain_type(type);
space = isl_qpolynomial_take_domain_space(qp);
space = isl_space_set_dim_name(space, type, pos, s);
qp = isl_qpolynomial_restore_domain_space(qp, space);
return qp;
}
__isl_give isl_qpolynomial *isl_qpolynomial_drop_dims(
__isl_take isl_qpolynomial *qp,
enum isl_dim_type type, unsigned first, unsigned n)
{
isl_space *space;
isl_size offset;
if (!qp)
return NULL;
if (type == isl_dim_out)
isl_die(qp->dim->ctx, isl_error_invalid,
"cannot drop output/set dimension",
goto error);
if (isl_qpolynomial_check_range(qp, type, first, n) < 0)
return isl_qpolynomial_free(qp);
type = domain_type(type);
if (n == 0 && !isl_space_is_named_or_nested(qp->dim, type))
return qp;
isl_assert(qp->dim->ctx, type == isl_dim_param ||
type == isl_dim_set, goto error);
space = isl_qpolynomial_take_domain_space(qp);
space = isl_space_drop_dims(space, type, first, n);
qp = isl_qpolynomial_restore_domain_space(qp, space);
qp = isl_qpolynomial_cow(qp);
if (!qp)
return NULL;
offset = isl_qpolynomial_domain_var_offset(qp, type);
if (offset < 0)
goto error;
first += offset;
qp->div = isl_mat_drop_cols(qp->div, 2 + first, n);
if (!qp->div)
goto error;
qp->poly = isl_poly_drop(qp->poly, first, n);
if (!qp->poly)
goto error;
return qp;
error:
isl_qpolynomial_free(qp);
return NULL;
}
/* Project the domain of the quasi-polynomial onto its parameter space.
* The quasi-polynomial may not involve any of the domain dimensions.
*/
__isl_give isl_qpolynomial *isl_qpolynomial_project_domain_on_params(
__isl_take isl_qpolynomial *qp)
{
isl_space *space;
isl_size n;
isl_bool involves;
n = isl_qpolynomial_dim(qp, isl_dim_in);
if (n < 0)
return isl_qpolynomial_free(qp);
involves = isl_qpolynomial_involves_dims(qp, isl_dim_in, 0, n);
if (involves < 0)
return isl_qpolynomial_free(qp);
if (involves)
isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
"polynomial involves some of the domain dimensions",
return isl_qpolynomial_free(qp));
qp = isl_qpolynomial_drop_dims(qp, isl_dim_in, 0, n);
space = isl_qpolynomial_get_domain_space(qp);
space = isl_space_params(space);
qp = isl_qpolynomial_reset_domain_space(qp, space);
return qp;
}
static __isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities_lifted(
__isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq)
{
int i, j, k;
isl_int denom;
unsigned total;
unsigned n_div;
isl_poly *poly;
if (!eq)
goto error;
if (eq->n_eq == 0) {
isl_basic_set_free(eq);
return qp;
}
qp = isl_qpolynomial_cow(qp);
if (!qp)
goto error;
qp->div = isl_mat_cow(qp->div);
if (!qp->div)
goto error;
total = isl_basic_set_offset(eq, isl_dim_div);
n_div = eq->n_div;
isl_int_init(denom);
for (i = 0; i < eq->n_eq; ++i) {
j = isl_seq_last_non_zero(eq->eq[i], total + n_div);
if (j < 0 || j == 0 || j >= total)
continue;
for (k = 0; k < qp->div->n_row; ++k) {
if (isl_int_is_zero(qp->div->row[k][1 + j]))
continue;
isl_seq_elim(qp->div->row[k] + 1, eq->eq[i], j, total,
&qp->div->row[k][0]);
normalize_div(qp, k);
}
if (isl_int_is_pos(eq->eq[i][j]))
isl_seq_neg(eq->eq[i], eq->eq[i], total);
isl_int_abs(denom, eq->eq[i][j]);
isl_int_set_si(eq->eq[i][j], 0);
poly = isl_poly_from_affine(qp->dim->ctx,
eq->eq[i], denom, total);
qp->poly = isl_poly_subs(qp->poly, j - 1, 1, &poly);
isl_poly_free(poly);
}
isl_int_clear(denom);
if (!qp->poly)
goto error;
isl_basic_set_free(eq);
qp = substitute_non_divs(qp);
qp = sort_divs(qp);
return qp;
error:
isl_basic_set_free(eq);
isl_qpolynomial_free(qp);
return NULL;
}
/* Exploit the equalities in "eq" to simplify the quasi-polynomial.
*/
__isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities(
__isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq)
{
if (!qp || !eq)
goto error;
if (qp->div->n_row > 0)
eq = isl_basic_set_add_dims(eq, isl_dim_set, qp->div->n_row);
return isl_qpolynomial_substitute_equalities_lifted(qp, eq);
error:
isl_basic_set_free(eq);
isl_qpolynomial_free(qp);
return NULL;
}
/* Look for equalities among the variables shared by context and qp
* and the integer divisions of qp, if any.
* The equalities are then used to eliminate variables and/or integer
* divisions from qp.
*/
__isl_give isl_qpolynomial *isl_qpolynomial_gist(
__isl_take isl_qpolynomial *qp, __isl_take isl_set *context)
{
isl_local_space *ls;
isl_basic_set *aff;
ls = isl_qpolynomial_get_domain_local_space(qp);
context = isl_local_space_lift_set(ls, context);
aff = isl_set_affine_hull(context);
return isl_qpolynomial_substitute_equalities_lifted(qp, aff);
}
__isl_give isl_qpolynomial *isl_qpolynomial_gist_params(
__isl_take isl_qpolynomial *qp, __isl_take isl_set *context)
{
isl_space *space = isl_qpolynomial_get_domain_space(qp);
isl_set *dom_context = isl_set_universe(space);
dom_context = isl_set_intersect_params(dom_context, context);
return isl_qpolynomial_gist(qp, dom_context);
}
/* Return a zero isl_qpolynomial in the given space.
*
* This is a helper function for isl_pw_*_as_* that ensures a uniform
* interface over all piecewise types.
*/
static __isl_give isl_qpolynomial *isl_qpolynomial_zero_in_space(
__isl_take isl_space *space)
{
return isl_qpolynomial_zero_on_domain(isl_space_domain(space));
}
#define isl_qpolynomial_involves_nan isl_qpolynomial_is_nan
#undef PW
#define PW isl_pw_qpolynomial
#undef BASE
#define BASE qpolynomial
#undef EL_IS_ZERO
#define EL_IS_ZERO is_zero
#undef ZERO
#define ZERO zero
#undef IS_ZERO
#define IS_ZERO is_zero
#undef FIELD
#define FIELD qp
#undef DEFAULT_IS_ZERO
#define DEFAULT_IS_ZERO 1
#include <isl_pw_templ.c>
#include <isl_pw_un_op_templ.c>
#include <isl_pw_add_disjoint_templ.c>
#include <isl_pw_domain_reverse_templ.c>
#include <isl_pw_eval.c>
#include <isl_pw_fix_templ.c>
#include <isl_pw_from_range_templ.c>
#include <isl_pw_insert_dims_templ.c>
#include <isl_pw_lift_templ.c>
#include <isl_pw_morph_templ.c>
#include <isl_pw_move_dims_templ.c>
#include <isl_pw_neg_templ.c>
#include <isl_pw_opt_templ.c>
#include <isl_pw_split_dims_templ.c>
#include <isl_pw_sub_templ.c>
#undef BASE
#define BASE pw_qpolynomial
#include <isl_union_single.c>
#include <isl_union_domain_reverse_templ.c>
#include <isl_union_eval.c>
#include <isl_union_neg.c>
#include <isl_union_sub_templ.c>
int isl_pw_qpolynomial_is_one(__isl_keep isl_pw_qpolynomial *pwqp)
{
if (!pwqp)
return -1;
if (pwqp->n != -1)
return 0;
if (!isl_set_plain_is_universe(pwqp->p[0].set))
return 0;
return isl_qpolynomial_is_one(pwqp->p[0].qp);
}
__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
__isl_take isl_pw_qpolynomial *pwqp1,
__isl_take isl_pw_qpolynomial *pwqp2)
{
return isl_pw_qpolynomial_union_add_(pwqp1, pwqp2);
}
__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
__isl_take isl_pw_qpolynomial *pwqp1,
__isl_take isl_pw_qpolynomial *pwqp2)
{
int i, j, n;
struct isl_pw_qpolynomial *res;
if (!pwqp1 || !pwqp2)
goto error;
isl_assert(pwqp1->dim->ctx, isl_space_is_equal(pwqp1->dim, pwqp2->dim),
goto error);
if (isl_pw_qpolynomial_is_zero(pwqp1)) {
isl_pw_qpolynomial_free(pwqp2);
return pwqp1;
}
if (isl_pw_qpolynomial_is_zero(pwqp2)) {
isl_pw_qpolynomial_free(pwqp1);
return pwqp2;
}
if (isl_pw_qpolynomial_is_one(pwqp1)) {
isl_pw_qpolynomial_free(pwqp1);
return pwqp2;
}
if (isl_pw_qpolynomial_is_one(pwqp2)) {
isl_pw_qpolynomial_free(pwqp2);
return pwqp1;
}
n = pwqp1->n * pwqp2->n;
res = isl_pw_qpolynomial_alloc_size(isl_space_copy(pwqp1->dim), n);
for (i = 0; i < pwqp1->n; ++i) {
for (j = 0; j < pwqp2->n; ++j) {
struct isl_set *common;
struct isl_qpolynomial *prod;
common = isl_set_intersect(isl_set_copy(pwqp1->p[i].set),
isl_set_copy(pwqp2->p[j].set));
if (isl_set_plain_is_empty(common)) {
isl_set_free(common);
continue;
}
prod = isl_qpolynomial_mul(
isl_qpolynomial_copy(pwqp1->p[i].qp),
isl_qpolynomial_copy(pwqp2->p[j].qp));
res = isl_pw_qpolynomial_add_piece(res, common, prod);
}
}
isl_pw_qpolynomial_free(pwqp1);
isl_pw_qpolynomial_free(pwqp2);
return res;
error:
isl_pw_qpolynomial_free(pwqp1);
isl_pw_qpolynomial_free(pwqp2);
return NULL;
}
__isl_give isl_val *isl_poly_eval(__isl_take isl_poly *poly,
__isl_take isl_vec *vec)
{
int i;
isl_bool is_cst;
isl_poly_rec *rec;
isl_val *res;
isl_val *base;
is_cst = isl_poly_is_cst(poly);
if (is_cst < 0)
goto error;
if (is_cst) {
isl_vec_free(vec);
res = isl_poly_get_constant_val(poly);
isl_poly_free(poly);
return res;
}
rec = isl_poly_as_rec(poly);
if (!rec || !vec)
goto error;
isl_assert(poly->ctx, rec->n >= 1, goto error);
base = isl_val_rat_from_isl_int(poly->ctx,
vec->el[1 + poly->var], vec->el[0]);
res = isl_poly_eval(isl_poly_copy(rec->p[rec->n - 1]),
isl_vec_copy(vec));
for (i = rec->n - 2; i >= 0; --i) {
res = isl_val_mul(res, isl_val_copy(base));
res = isl_val_add(res, isl_poly_eval(isl_poly_copy(rec->p[i]),
isl_vec_copy(vec)));
}
isl_val_free(base);
isl_poly_free(poly);
isl_vec_free(vec);
return res;
error:
isl_poly_free(poly);
isl_vec_free(vec);
return NULL;
}
/* Evaluate "qp" in the void point "pnt".
* In particular, return the value NaN.
*/
static __isl_give isl_val *eval_void(__isl_take isl_qpolynomial *qp,
__isl_take isl_point *pnt)
{
isl_ctx *ctx;
ctx = isl_point_get_ctx(pnt);
isl_qpolynomial_free(qp);
isl_point_free(pnt);
return isl_val_nan(ctx);
}
__isl_give isl_val *isl_qpolynomial_eval(__isl_take isl_qpolynomial *qp,
__isl_take isl_point *pnt)
{
isl_bool is_void;
isl_vec *ext;
isl_val *v;
if (!qp || !pnt)
goto error;
isl_assert(pnt->dim->ctx, isl_space_is_equal(pnt->dim, qp->dim), goto error);
is_void = isl_point_is_void(pnt);
if (is_void < 0)
goto error;
if (is_void)
return eval_void(qp, pnt);
ext = isl_local_extend_point_vec(qp->div, isl_vec_copy(pnt->vec));
v = isl_poly_eval(isl_qpolynomial_get_poly(qp), ext);
isl_qpolynomial_free(qp);
isl_point_free(pnt);
return v;
error:
isl_qpolynomial_free(qp);
isl_point_free(pnt);
return NULL;
}
int isl_poly_cmp(__isl_keep isl_poly_cst *cst1, __isl_keep isl_poly_cst *cst2)
{
int cmp;
isl_int t;
isl_int_init(t);
isl_int_mul(t, cst1->n, cst2->d);
isl_int_submul(t, cst2->n, cst1->d);
cmp = isl_int_sgn(t);
isl_int_clear(t);
return cmp;
}
__isl_give isl_qpolynomial *isl_qpolynomial_insert_dims(
__isl_take isl_qpolynomial *qp, enum isl_dim_type type,
unsigned first, unsigned n)
{
unsigned total;
unsigned g_pos;
int *exp;
isl_space *space;
if (!qp)
return NULL;
if (type == isl_dim_out)
isl_die(qp->div->ctx, isl_error_invalid,
"cannot insert output/set dimensions",
goto error);
if (isl_qpolynomial_check_range(qp, type, first, 0) < 0)
return isl_qpolynomial_free(qp);
type = domain_type(type);
if (n == 0 && !isl_space_is_named_or_nested(qp->dim, type))
return qp;
qp = isl_qpolynomial_cow(qp);
if (!qp)
return NULL;
g_pos = pos(qp->dim, type) + first;
qp->div = isl_mat_insert_zero_cols(qp->div, 2 + g_pos, n);
if (!qp->div)
goto error;
total = qp->div->n_col - 2;
if (total > g_pos) {
int i;
exp = isl_alloc_array(qp->div->ctx, int, total - g_pos);
if (!exp)
goto error;
for (i = 0; i < total - g_pos; ++i)
exp[i] = i + n;
qp->poly = expand(qp->poly, exp, g_pos);
free(exp);
if (!qp->poly)
goto error;
}
space = isl_qpolynomial_take_domain_space(qp);
space = isl_space_insert_dims(space, type, first, n);
qp = isl_qpolynomial_restore_domain_space(qp, space);
return qp;
error:
isl_qpolynomial_free(qp);
return NULL;
}
__isl_give isl_qpolynomial *isl_qpolynomial_add_dims(
__isl_take isl_qpolynomial *qp, enum isl_dim_type type, unsigned n)
{
isl_size pos;
pos = isl_qpolynomial_dim(qp, type);
if (pos < 0)
return isl_qpolynomial_free(qp);
return isl_qpolynomial_insert_dims(qp, type, pos, n);
}
static int *reordering_move(isl_ctx *ctx,
unsigned len, unsigned dst, unsigned src, unsigned n)
{
int i;
int *reordering;
reordering = isl_alloc_array(ctx, int, len);
if (!reordering)
return NULL;
if (dst <= src) {
for (i = 0; i < dst; ++i)
reordering[i] = i;
for (i = 0; i < n; ++i)
reordering[src + i] = dst + i;
for (i = 0; i < src - dst; ++i)
reordering[dst + i] = dst + n + i;
for (i = 0; i < len - src - n; ++i)
reordering[src + n + i] = src + n + i;
} else {
for (i = 0; i < src; ++i)
reordering[i] = i;
for (i = 0; i < n; ++i)
reordering[src + i] = dst + i;
for (i = 0; i < dst - src; ++i)
reordering[src + n + i] = src + i;
for (i = 0; i < len - dst - n; ++i)
reordering[dst + n + i] = dst + n + i;
}
return reordering;
}
/* Move the "n" variables starting at "src_pos" of "qp" to "dst_pos".
* Only modify the polynomial expression and the local variables of "qp".
* The caller is responsible for modifying the space accordingly.
*/
static __isl_give isl_qpolynomial *local_poly_move_dims(
__isl_take isl_qpolynomial *qp,
unsigned dst_pos, unsigned src_pos, unsigned n)
{
isl_ctx *ctx;
isl_size total;
int *reordering;
isl_local *local;
isl_poly *poly;
local = isl_qpolynomial_take_local(qp);
local = isl_local_move_vars(local, dst_pos, src_pos, n);
qp = isl_qpolynomial_restore_local(qp, local);
qp = sort_divs(qp);
total = isl_qpolynomial_domain_dim(qp, isl_dim_all);
if (total < 0)
return isl_qpolynomial_free(qp);
ctx = isl_qpolynomial_get_ctx(qp);
reordering = reordering_move(ctx, total, dst_pos, src_pos, n);
if (!reordering)
return isl_qpolynomial_free(qp);
poly = isl_qpolynomial_take_poly(qp);
poly = reorder(poly, reordering);
qp = isl_qpolynomial_restore_poly(qp, poly);
free(reordering);
return qp;
}
__isl_give isl_qpolynomial *isl_qpolynomial_move_dims(
__isl_take isl_qpolynomial *qp,
enum isl_dim_type dst_type, unsigned dst_pos,
enum isl_dim_type src_type, unsigned src_pos, unsigned n)
{
isl_ctx *ctx;
unsigned g_dst_pos;
unsigned g_src_pos;
isl_size src_off, dst_off;
isl_space *space;
if (!qp)
return NULL;
ctx = isl_qpolynomial_get_ctx(qp);
if (dst_type == isl_dim_out || src_type == isl_dim_out)
isl_die(ctx, isl_error_invalid,
"cannot move output/set dimension",
return isl_qpolynomial_free(qp));
if (src_type == isl_dim_div || dst_type == isl_dim_div)
isl_die(ctx, isl_error_invalid, "cannot move local variables",
return isl_qpolynomial_free(qp));
if (isl_qpolynomial_check_range(qp, src_type, src_pos, n) < 0)
return isl_qpolynomial_free(qp);
if (dst_type == isl_dim_in)
dst_type = isl_dim_set;
if (src_type == isl_dim_in)
src_type = isl_dim_set;
if (n == 0 &&
!isl_space_is_named_or_nested(qp->dim, src_type) &&
!isl_space_is_named_or_nested(qp->dim, dst_type))
return qp;
src_off = isl_qpolynomial_domain_var_offset(qp, src_type);
dst_off = isl_qpolynomial_domain_var_offset(qp, dst_type);
if (src_off < 0 || dst_off < 0)
return isl_qpolynomial_free(qp);
g_dst_pos = dst_off + dst_pos;
g_src_pos = src_off + src_pos;
if (dst_type > src_type)
g_dst_pos -= n;
qp = local_poly_move_dims(qp, g_dst_pos, g_src_pos, n);
space = isl_qpolynomial_take_domain_space(qp);
space = isl_space_move_dims(space, dst_type, dst_pos,
src_type, src_pos, n);
qp = isl_qpolynomial_restore_domain_space(qp, space);
return qp;
}
/* Given a quasi-polynomial on a domain (A -> B),
* interchange A and B in the wrapped domain
* to obtain a quasi-polynomial on the domain (B -> A).
*/
__isl_give isl_qpolynomial *isl_qpolynomial_domain_reverse(
__isl_take isl_qpolynomial *qp)
{
isl_space *space;
isl_size n_in, n_out, offset;
space = isl_qpolynomial_peek_domain_space(qp);
offset = isl_space_offset(space, isl_dim_set);
n_in = isl_space_wrapped_dim(space, isl_dim_set, isl_dim_in);
n_out = isl_space_wrapped_dim(space, isl_dim_set, isl_dim_out);
if (offset < 0 || n_in < 0 || n_out < 0)
return isl_qpolynomial_free(qp);
qp = local_poly_move_dims(qp, offset, offset + n_in, n_out);
space = isl_qpolynomial_take_domain_space(qp);
space = isl_space_wrapped_reverse(space);
qp = isl_qpolynomial_restore_domain_space(qp, space);
return qp;
}
__isl_give isl_qpolynomial *isl_qpolynomial_from_affine(
__isl_take isl_space *space, isl_int *f, isl_int denom)
{
isl_size d;
isl_poly *poly;
space = isl_space_domain(space);
if (!space)
return NULL;
d = isl_space_dim(space, isl_dim_all);
poly = d < 0 ? NULL : isl_poly_from_affine(space->ctx, f, denom, 1 + d);
return isl_qpolynomial_alloc(space, 0, poly);
}
__isl_give isl_qpolynomial *isl_qpolynomial_from_aff(__isl_take isl_aff *aff)
{
isl_ctx *ctx;
isl_poly *poly;
isl_qpolynomial *qp;
if (!aff)
return NULL;
ctx = isl_aff_get_ctx(aff);
poly = isl_poly_from_affine(ctx, aff->v->el + 1, aff->v->el[0],
aff->v->size - 1);
qp = isl_qpolynomial_alloc(isl_aff_get_domain_space(aff),
aff->ls->div->n_row, poly);
if (!qp)
goto error;
isl_mat_free(qp->div);
qp->div = isl_mat_copy(aff->ls->div);
qp->div = isl_mat_cow(qp->div);
if (!qp->div)
goto error;
isl_aff_free(aff);
qp = reduce_divs(qp);
qp = remove_redundant_divs(qp);
return qp;
error:
isl_aff_free(aff);
return isl_qpolynomial_free(qp);
}
__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_pw_aff(
__isl_take isl_pw_aff *pwaff)
{
int i;
isl_pw_qpolynomial *pwqp;
if (!pwaff)
return NULL;
pwqp = isl_pw_qpolynomial_alloc_size(isl_pw_aff_get_space(pwaff),
pwaff->n);
for (i = 0; i < pwaff->n; ++i) {
isl_set *dom;
isl_qpolynomial *qp;
dom = isl_set_copy(pwaff->p[i].set);
qp = isl_qpolynomial_from_aff(isl_aff_copy(pwaff->p[i].aff));
pwqp = isl_pw_qpolynomial_add_piece(pwqp, dom, qp);
}
isl_pw_aff_free(pwaff);
return pwqp;
}
__isl_give isl_qpolynomial *isl_qpolynomial_from_constraint(
__isl_take isl_constraint *c, enum isl_dim_type type, unsigned pos)
{
isl_aff *aff;
aff = isl_constraint_get_bound(c, type, pos);
isl_constraint_free(c);
return isl_qpolynomial_from_aff(aff);
}
/* For each 0 <= i < "n", replace variable "first" + i of type "type"
* in "qp" by subs[i].
*/
__isl_give isl_qpolynomial *isl_qpolynomial_substitute(
__isl_take isl_qpolynomial *qp,
enum isl_dim_type type, unsigned first, unsigned n,
__isl_keep isl_qpolynomial **subs)
{
int i;
isl_poly *poly;
isl_poly **polys;
if (n == 0)
return qp;
if (!qp)
return NULL;
if (type == isl_dim_out)
isl_die(qp->dim->ctx, isl_error_invalid,
"cannot substitute output/set dimension",
goto error);
if (isl_qpolynomial_check_range(qp, type, first, n) < 0)
return isl_qpolynomial_free(qp);
type = domain_type(type);
for (i = 0; i < n; ++i)
if (!subs[i])
goto error;
for (i = 0; i < n; ++i)
if (isl_qpolynomial_check_equal_space(qp, subs[i]) < 0)
goto error;
isl_assert(qp->dim->ctx, qp->div->n_row == 0, goto error);
for (i = 0; i < n; ++i)
isl_assert(qp->dim->ctx, subs[i]->div->n_row == 0, goto error);
first += pos(qp->dim, type);
polys = isl_alloc_array(qp->dim->ctx, struct isl_poly *, n);
if (!polys)
goto error;
for (i = 0; i < n; ++i)
polys[i] = subs[i]->poly;
poly = isl_qpolynomial_take_poly(qp);
poly = isl_poly_subs(poly, first, n, polys);
qp = isl_qpolynomial_restore_poly(qp, poly);
free(polys);
return qp;
error:
isl_qpolynomial_free(qp);
return NULL;
}
/* Extend "bset" with extra set dimensions for each integer division
* in "qp" and then call "fn" with the extended bset and the polynomial
* that results from replacing each of the integer divisions by the
* corresponding extra set dimension.
*/
isl_stat isl_qpolynomial_as_polynomial_on_domain(__isl_keep isl_qpolynomial *qp,
__isl_keep isl_basic_set *bset,
isl_stat (*fn)(__isl_take isl_basic_set *bset,
__isl_take isl_qpolynomial *poly, void *user), void *user)
{
isl_space *space;
isl_local_space *ls;
isl_poly *poly;
isl_qpolynomial *polynomial;
if (!qp || !bset)
return isl_stat_error;
if (qp->div->n_row == 0)
return fn(isl_basic_set_copy(bset), isl_qpolynomial_copy(qp),
user);
space = isl_space_copy(qp->dim);
space = isl_space_add_dims(space, isl_dim_set, qp->div->n_row);
poly = isl_qpolynomial_get_poly(qp);
polynomial = isl_qpolynomial_alloc(space, 0, poly);
bset = isl_basic_set_copy(bset);
ls = isl_qpolynomial_get_domain_local_space(qp);
bset = isl_local_space_lift_basic_set(ls, bset);
return fn(bset, polynomial, user);
}
/* Return total degree in variables first (inclusive) up to last (exclusive).
*/
int isl_poly_degree(__isl_keep isl_poly *poly, int first, int last)
{
int deg = -1;
int i;
isl_bool is_zero, is_cst;
isl_poly_rec *rec;
is_zero = isl_poly_is_zero(poly);
if (is_zero < 0)
return -2;
if (is_zero)
return -1;
is_cst = isl_poly_is_cst(poly);
if (is_cst < 0)
return -2;
if (is_cst || poly->var < first)
return 0;
rec = isl_poly_as_rec(poly);
if (!rec)
return -2;
for (i = 0; i < rec->n; ++i) {
int d;
is_zero = isl_poly_is_zero(rec->p[i]);
if (is_zero < 0)
return -2;
if (is_zero)
continue;
d = isl_poly_degree(rec->p[i], first, last);
if (poly->var < last)
d += i;
if (d > deg)
deg = d;
}
return deg;
}
/* Return total degree in set variables.
*/
int isl_qpolynomial_degree(__isl_keep isl_qpolynomial *poly)
{
isl_size ovar;
isl_size nvar;
if (!poly)
return -2;
ovar = isl_space_offset(poly->dim, isl_dim_set);
nvar = isl_space_dim(poly->dim, isl_dim_set);
if (ovar < 0 || nvar < 0)
return -2;
return isl_poly_degree(poly->poly, ovar, ovar + nvar);
}
__isl_give isl_poly *isl_poly_coeff(__isl_keep isl_poly *poly,
unsigned pos, int deg)
{
int i;
isl_bool is_cst;
isl_poly_rec *rec;
is_cst = isl_poly_is_cst(poly);
if (is_cst < 0)
return NULL;
if (is_cst || poly->var < pos) {
if (deg == 0)
return isl_poly_copy(poly);
else
return isl_poly_zero(poly->ctx);
}
rec = isl_poly_as_rec(poly);
if (!rec)
return NULL;
if (poly->var == pos) {
if (deg < rec->n)
return isl_poly_copy(rec->p[deg]);
else
return isl_poly_zero(poly->ctx);
}
poly = isl_poly_copy(poly);
poly = isl_poly_cow(poly);
rec = isl_poly_as_rec(poly);
if (!rec)
goto error;
for (i = 0; i < rec->n; ++i) {
isl_poly *t;
t = isl_poly_coeff(rec->p[i], pos, deg);
if (!t)
goto error;
isl_poly_free(rec->p[i]);
rec->p[i] = t;
}
return poly;
error:
isl_poly_free(poly);
return NULL;
}
/* Return coefficient of power "deg" of variable "t_pos" of type "type".
*/
__isl_give isl_qpolynomial *isl_qpolynomial_coeff(
__isl_keep isl_qpolynomial *qp,
enum isl_dim_type type, unsigned t_pos, int deg)
{
unsigned g_pos;
isl_poly *poly;
isl_qpolynomial *c;
if (!qp)
return NULL;
if (type == isl_dim_out)
isl_die(qp->div->ctx, isl_error_invalid,
"output/set dimension does not have a coefficient",
return NULL);
if (isl_qpolynomial_check_range(qp, type, t_pos, 1) < 0)
return NULL;
type = domain_type(type);
g_pos = pos(qp->dim, type) + t_pos;
poly = isl_poly_coeff(isl_qpolynomial_peek_poly(qp), g_pos, deg);
c = isl_qpolynomial_alloc(isl_space_copy(qp->dim),
qp->div->n_row, poly);
if (!c)
return NULL;
isl_mat_free(c->div);
c->div = isl_qpolynomial_get_local(qp);
if (!c->div)
goto error;
return c;
error:
isl_qpolynomial_free(c);
return NULL;
}
/* Homogenize the polynomial in the variables first (inclusive) up to
* last (exclusive) by inserting powers of variable first.
* Variable first is assumed not to appear in the input.
*/
__isl_give isl_poly *isl_poly_homogenize(__isl_take isl_poly *poly, int deg,
int target, int first, int last)
{
int i;
isl_bool is_zero, is_cst;
isl_poly_rec *rec;
is_zero = isl_poly_is_zero(poly);
if (is_zero < 0)
return isl_poly_free(poly);
if (is_zero)
return poly;
if (deg == target)
return poly;
is_cst = isl_poly_is_cst(poly);
if (is_cst < 0)
return isl_poly_free(poly);
if (is_cst || poly->var < first) {
isl_poly *hom;
hom = isl_poly_var_pow(poly->ctx, first, target - deg);
if (!hom)
goto error;
rec = isl_poly_as_rec(hom);
rec->p[target - deg] = isl_poly_mul(rec->p[target - deg], poly);
return hom;
}
poly = isl_poly_cow(poly);
rec = isl_poly_as_rec(poly);
if (!rec)
goto error;
for (i = 0; i < rec->n; ++i) {
is_zero = isl_poly_is_zero(rec->p[i]);
if (is_zero < 0)
return isl_poly_free(poly);
if (is_zero)
continue;
rec->p[i] = isl_poly_homogenize(rec->p[i],
poly->var < last ? deg + i : i, target,
first, last);
if (!rec->p[i])
goto error;
}
return poly;
error:
isl_poly_free(poly);
return NULL;
}
/* Homogenize the polynomial in the set variables by introducing
* powers of an extra set variable at position 0.
*/
__isl_give isl_qpolynomial *isl_qpolynomial_homogenize(
__isl_take isl_qpolynomial *poly)
{
isl_size ovar;
isl_size nvar;
int deg = isl_qpolynomial_degree(poly);
if (deg < -1)
goto error;
poly = isl_qpolynomial_insert_dims(poly, isl_dim_in, 0, 1);
poly = isl_qpolynomial_cow(poly);
if (!poly)
goto error;
ovar = isl_space_offset(poly->dim, isl_dim_set);
nvar = isl_space_dim(poly->dim, isl_dim_set);
if (ovar < 0 || nvar < 0)
return isl_qpolynomial_free(poly);
poly->poly = isl_poly_homogenize(poly->poly, 0, deg, ovar, ovar + nvar);
if (!poly->poly)
goto error;
return poly;
error:
isl_qpolynomial_free(poly);
return NULL;
}
__isl_give isl_term *isl_term_alloc(__isl_take isl_space *space,
__isl_take isl_mat *div)
{
isl_term *term;
isl_size d;
int n;
d = isl_space_dim(space, isl_dim_all);
if (d < 0 || !div)
goto error;
n = d + div->n_row;
term = isl_calloc(space->ctx, struct isl_term,
sizeof(struct isl_term) + (n - 1) * sizeof(int));
if (!term)
goto error;
term->ref = 1;
term->dim = space;
term->div = div;
isl_int_init(term->n);
isl_int_init(term->d);
return term;
error:
isl_space_free(space);
isl_mat_free(div);
return NULL;
}
__isl_give isl_term *isl_term_copy(__isl_keep isl_term *term)
{
if (!term)
return NULL;
term->ref++;
return term;
}
__isl_give isl_term *isl_term_dup(__isl_keep isl_term *term)
{
int i;
isl_term *dup;
isl_size total;
total = isl_term_dim(term, isl_dim_all);
if (total < 0)
return NULL;
dup = isl_term_alloc(isl_space_copy(term->dim), isl_mat_copy(term->div));
if (!dup)
return NULL;
isl_int_set(dup->n, term->n);
isl_int_set(dup->d, term->d);
for (i = 0; i < total; ++i)
dup->pow[i] = term->pow[i];
return dup;
}
__isl_give isl_term *isl_term_cow(__isl_take isl_term *term)
{
if (!term)
return NULL;
if (term->ref == 1)
return term;
term->ref--;
return isl_term_dup(term);
}
__isl_null isl_term *isl_term_free(__isl_take isl_term *term)
{
if (!term)
return NULL;
if (--term->ref > 0)
return NULL;
isl_space_free(term->dim);
isl_mat_free(term->div);
isl_int_clear(term->n);
isl_int_clear(term->d);
free(term);
return NULL;
}
isl_size isl_term_dim(__isl_keep isl_term *term, enum isl_dim_type type)
{
isl_size dim;
if (!term)
return isl_size_error;
switch (type) {
case isl_dim_param:
case isl_dim_in:
case isl_dim_out: return isl_space_dim(term->dim, type);
case isl_dim_div: return term->div->n_row;
case isl_dim_all: dim = isl_space_dim(term->dim, isl_dim_all);
if (dim < 0)
return isl_size_error;
return dim + term->div->n_row;
default: return isl_size_error;
}
}
/* Return the space of "term".
*/
static __isl_keep isl_space *isl_term_peek_space(__isl_keep isl_term *term)
{
return term ? term->dim : NULL;
}
/* Return the offset of the first variable of type "type" within
* the variables of "term".
*/
static isl_size isl_term_offset(__isl_keep isl_term *term,
enum isl_dim_type type)
{
isl_space *space;
space = isl_term_peek_space(term);
if (!space)
return isl_size_error;
switch (type) {
case isl_dim_param:
case isl_dim_set: return isl_space_offset(space, type);
case isl_dim_div: return isl_space_dim(space, isl_dim_all);
default:
isl_die(isl_term_get_ctx(term), isl_error_invalid,
"invalid dimension type", return isl_size_error);
}
}
isl_ctx *isl_term_get_ctx(__isl_keep isl_term *term)
{
return term ? term->dim->ctx : NULL;
}
void isl_term_get_num(__isl_keep isl_term *term, isl_int *n)
{
if (!term)
return;
isl_int_set(*n, term->n);
}
/* Return the coefficient of the term "term".
*/
__isl_give isl_val *isl_term_get_coefficient_val(__isl_keep isl_term *term)
{
if (!term)
return NULL;
return isl_val_rat_from_isl_int(isl_term_get_ctx(term),
term->n, term->d);
}
#undef TYPE
#define TYPE isl_term
static
#include "check_type_range_templ.c"
isl_size isl_term_get_exp(__isl_keep isl_term *term,
enum isl_dim_type type, unsigned pos)
{
isl_size offset;
if (isl_term_check_range(term, type, pos, 1) < 0)
return isl_size_error;
offset = isl_term_offset(term, type);
if (offset < 0)
return isl_size_error;
return term->pow[offset + pos];
}
__isl_give isl_aff *isl_term_get_div(__isl_keep isl_term *term, unsigned pos)
{
isl_local_space *ls;
isl_aff *aff;
if (isl_term_check_range(term, isl_dim_div, pos, 1) < 0)
return NULL;
ls = isl_local_space_alloc_div(isl_space_copy(term->dim),
isl_mat_copy(term->div));
aff = isl_aff_alloc(ls);
if (!aff)
return NULL;
isl_seq_cpy(aff->v->el, term->div->row[pos], aff->v->size);
aff = isl_aff_normalize(aff);
return aff;
}
__isl_give isl_term *isl_poly_foreach_term(__isl_keep isl_poly *poly,
isl_stat (*fn)(__isl_take isl_term *term, void *user),
__isl_take isl_term *term, void *user)
{
int i;
isl_bool is_zero, is_bad, is_cst;
isl_poly_rec *rec;
is_zero = isl_poly_is_zero(poly);
if (is_zero < 0 || !term)
goto error;
if (is_zero)
return term;
is_cst = isl_poly_is_cst(poly);
is_bad = isl_poly_is_nan(poly);
if (is_bad >= 0 && !is_bad)
is_bad = isl_poly_is_infty(poly);
if (is_bad >= 0 && !is_bad)
is_bad = isl_poly_is_neginfty(poly);
if (is_cst < 0 || is_bad < 0)
return isl_term_free(term);
if (is_bad)
isl_die(isl_term_get_ctx(term), isl_error_invalid,
"cannot handle NaN/infty polynomial",
return isl_term_free(term));
if (is_cst) {
isl_poly_cst *cst;
cst = isl_poly_as_cst(poly);
if (!cst)
goto error;
term = isl_term_cow(term);
if (!term)
goto error;
isl_int_set(term->n, cst->n);
isl_int_set(term->d, cst->d);
if (fn(isl_term_copy(term), user) < 0)
goto error;
return term;
}
rec = isl_poly_as_rec(poly);
if (!rec)
goto error;
for (i = 0; i < rec->n; ++i) {
term = isl_term_cow(term);
if (!term)
goto error;
term->pow[poly->var] = i;
term = isl_poly_foreach_term(rec->p[i], fn, term, user);
if (!term)
goto error;
}
term = isl_term_cow(term);
if (!term)
return NULL;
term->pow[poly->var] = 0;
return term;
error:
isl_term_free(term);
return NULL;
}
isl_stat isl_qpolynomial_foreach_term(__isl_keep isl_qpolynomial *qp,
isl_stat (*fn)(__isl_take isl_term *term, void *user), void *user)
{
isl_local *local;
isl_term *term;
if (!qp)
return isl_stat_error;
local = isl_qpolynomial_get_local(qp);
term = isl_term_alloc(isl_space_copy(qp->dim), local);
if (!term)
return isl_stat_error;
term = isl_poly_foreach_term(isl_qpolynomial_peek_poly(qp),
fn, term, user);
isl_term_free(term);
return term ? isl_stat_ok : isl_stat_error;
}
__isl_give isl_qpolynomial *isl_qpolynomial_from_term(__isl_take isl_term *term)
{
isl_poly *poly;
isl_qpolynomial *qp;
int i;
isl_size n;
n = isl_term_dim(term, isl_dim_all);
if (n < 0)
term = isl_term_free(term);
if (!term)
return NULL;
poly = isl_poly_rat_cst(term->dim->ctx, term->n, term->d);
for (i = 0; i < n; ++i) {
if (!term->pow[i])
continue;
poly = isl_poly_mul(poly,
isl_poly_var_pow(term->dim->ctx, i, term->pow[i]));
}
qp = isl_qpolynomial_alloc(isl_space_copy(term->dim),
term->div->n_row, poly);
if (!qp)
goto error;
isl_mat_free(qp->div);
qp->div = isl_mat_copy(term->div);
if (!qp->div)
goto error;
isl_term_free(term);
return qp;
error:
isl_qpolynomial_free(qp);
isl_term_free(term);
return NULL;
}
__isl_give isl_qpolynomial *isl_qpolynomial_lift(__isl_take isl_qpolynomial *qp,
__isl_take isl_space *space)
{
int i;
int extra;
isl_size total, d_set, d_qp;
if (!qp || !space)
goto error;
if (isl_space_is_equal(qp->dim, space)) {
isl_space_free(space);
return qp;
}
qp = isl_qpolynomial_cow(qp);
if (!qp)
goto error;
d_set = isl_space_dim(space, isl_dim_set);
d_qp = isl_qpolynomial_domain_dim(qp, isl_dim_set);
extra = d_set - d_qp;
total = isl_space_dim(qp->dim, isl_dim_all);
if (d_set < 0 || d_qp < 0 || total < 0)
goto error;
if (qp->div->n_row) {
int *exp;
exp = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
if (!exp)
goto error;
for (i = 0; i < qp->div->n_row; ++i)
exp[i] = extra + i;
qp->poly = expand(qp->poly, exp, total);
free(exp);
if (!qp->poly)
goto error;
}
qp->div = isl_mat_insert_cols(qp->div, 2 + total, extra);
if (!qp->div)
goto error;
for (i = 0; i < qp->div->n_row; ++i)
isl_seq_clr(qp->div->row[i] + 2 + total, extra);
isl_space_free(isl_qpolynomial_take_domain_space(qp));
qp = isl_qpolynomial_restore_domain_space(qp, space);
return qp;
error:
isl_space_free(space);
isl_qpolynomial_free(qp);
return NULL;
}
/* For each parameter or variable that does not appear in qp,
* first eliminate the variable from all constraints and then set it to zero.
*/
static __isl_give isl_set *fix_inactive(__isl_take isl_set *set,
__isl_keep isl_qpolynomial *qp)
{
int *active = NULL;
int i;
isl_size d;
isl_size nparam;
isl_size nvar;
d = isl_set_dim(set, isl_dim_all);
if (d < 0 || !qp)
goto error;
active = isl_calloc_array(set->ctx, int, d);
if (set_active(qp, active) < 0)
goto error;
for (i = 0; i < d; ++i)
if (!active[i])
break;
if (i == d) {
free(active);
return set;
}
nparam = isl_set_dim(set, isl_dim_param);
nvar = isl_set_dim(set, isl_dim_set);
if (nparam < 0 || nvar < 0)
goto error;
for (i = 0; i < nparam; ++i) {
if (active[i])
continue;
set = isl_set_eliminate(set, isl_dim_param, i, 1);
set = isl_set_fix_si(set, isl_dim_param, i, 0);
}
for (i = 0; i < nvar; ++i) {
if (active[nparam + i])
continue;
set = isl_set_eliminate(set, isl_dim_set, i, 1);
set = isl_set_fix_si(set, isl_dim_set, i, 0);
}
free(active);
return set;
error:
free(active);
isl_set_free(set);
return NULL;
}
struct isl_opt_data {
isl_qpolynomial *qp;
int first;
isl_val *opt;
int max;
};
static isl_stat opt_fn(__isl_take isl_point *pnt, void *user)
{
struct isl_opt_data *data = (struct isl_opt_data *)user;
isl_val *val;
val = isl_qpolynomial_eval(isl_qpolynomial_copy(data->qp), pnt);
if (data->first) {
data->first = 0;
data->opt = val;
} else if (data->max) {
data->opt = isl_val_max(data->opt, val);
} else {
data->opt = isl_val_min(data->opt, val);
}
return isl_stat_ok;
}
__isl_give isl_val *isl_qpolynomial_opt_on_domain(
__isl_take isl_qpolynomial *qp, __isl_take isl_set *set, int max)
{
struct isl_opt_data data = { NULL, 1, NULL, max };
isl_bool is_cst;
if (!set)
goto error;
is_cst = isl_poly_is_cst(isl_qpolynomial_peek_poly(qp));
if (is_cst < 0)
goto error;
if (is_cst) {
isl_set_free(set);
data.opt = isl_qpolynomial_get_constant_val(qp);
isl_qpolynomial_free(qp);
return data.opt;
}
set = fix_inactive(set, qp);
data.qp = qp;
if (isl_set_foreach_point(set, opt_fn, &data) < 0)
goto error;
if (data.first)
data.opt = isl_val_zero(isl_set_get_ctx(set));
isl_set_free(set);
isl_qpolynomial_free(qp);
return data.opt;
error:
isl_set_free(set);
isl_qpolynomial_free(qp);
isl_val_free(data.opt);
return NULL;
}
__isl_give isl_qpolynomial *isl_qpolynomial_morph_domain(
__isl_take isl_qpolynomial *qp, __isl_take isl_morph *morph)
{
int i;
int n_sub;
isl_ctx *ctx;
isl_space *space;
isl_poly **subs;
isl_mat *mat, *diag;
qp = isl_qpolynomial_cow(qp);
space = isl_qpolynomial_peek_domain_space(qp);
if (isl_morph_check_applies(morph, space) < 0)
goto error;
ctx = isl_qpolynomial_get_ctx(qp);
n_sub = morph->inv->n_row - 1;
if (morph->inv->n_row != morph->inv->n_col)
n_sub += qp->div->n_row;
subs = isl_calloc_array(ctx, struct isl_poly *, n_sub);
if (n_sub && !subs)
goto error;
for (i = 0; 1 + i < morph->inv->n_row; ++i)
subs[i] = isl_poly_from_affine(ctx, morph->inv->row[1 + i],
morph->inv->row[0][0], morph->inv->n_col);
if (morph->inv->n_row != morph->inv->n_col)
for (i = 0; i < qp->div->n_row; ++i)
subs[morph->inv->n_row - 1 + i] =
isl_poly_var_pow(ctx, morph->inv->n_col - 1 + i, 1);
qp->poly = isl_poly_subs(qp->poly, 0, n_sub, subs);
for (i = 0; i < n_sub; ++i)
isl_poly_free(subs[i]);
free(subs);
diag = isl_mat_diag(ctx, 1, morph->inv->row[0][0]);
mat = isl_mat_diagonal(diag, isl_mat_copy(morph->inv));
diag = isl_mat_diag(ctx, qp->div->n_row, morph->inv->row[0][0]);
mat = isl_mat_diagonal(mat, diag);
qp->div = isl_mat_product(qp->div, mat);
if (!qp->poly || !qp->div)
goto error;
isl_space_free(isl_qpolynomial_take_domain_space(qp));
space = isl_space_copy(morph->ran->dim);
qp = isl_qpolynomial_restore_domain_space(qp, space);
isl_morph_free(morph);
return qp;
error:
isl_qpolynomial_free(qp);
isl_morph_free(morph);
return NULL;
}
__isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
__isl_take isl_union_pw_qpolynomial *upwqp1,
__isl_take isl_union_pw_qpolynomial *upwqp2)
{
return isl_union_pw_qpolynomial_match_bin_op(upwqp1, upwqp2,
&isl_pw_qpolynomial_mul);
}
/* Reorder the dimension of "qp" according to the given reordering.
*/
__isl_give isl_qpolynomial *isl_qpolynomial_realign_domain(
__isl_take isl_qpolynomial *qp, __isl_take isl_reordering *r)
{
isl_space *space;
isl_poly *poly;
isl_local *local;
if (!qp)
goto error;
r = isl_reordering_extend(r, qp->div->n_row);
if (!r)
goto error;
local = isl_qpolynomial_take_local(qp);
local = isl_local_reorder(local, isl_reordering_copy(r));
qp = isl_qpolynomial_restore_local(qp, local);
poly = isl_qpolynomial_take_poly(qp);
poly = reorder(poly, r->pos);
qp = isl_qpolynomial_restore_poly(qp, poly);
space = isl_reordering_get_space(r);
qp = isl_qpolynomial_reset_domain_space(qp, space);
isl_reordering_free(r);
return qp;
error:
isl_qpolynomial_free(qp);
isl_reordering_free(r);
return NULL;
}
__isl_give isl_qpolynomial *isl_qpolynomial_align_params(
__isl_take isl_qpolynomial *qp, __isl_take isl_space *model)
{
isl_space *domain_space;
isl_bool equal_params;
domain_space = isl_qpolynomial_peek_domain_space(qp);
equal_params = isl_space_has_equal_params(domain_space, model);
if (equal_params < 0)
goto error;
if (!equal_params) {
isl_reordering *exp;
exp = isl_parameter_alignment_reordering(domain_space, model);
qp = isl_qpolynomial_realign_domain(qp, exp);
}
isl_space_free(model);
return qp;
error:
isl_space_free(model);
isl_qpolynomial_free(qp);
return NULL;
}
struct isl_split_periods_data {
int max_periods;
isl_pw_qpolynomial *res;
};
/* Create a slice where the integer division "div" has the fixed value "v".
* In particular, if "div" refers to floor(f/m), then create a slice
*
* m v <= f <= m v + (m - 1)
*
* or
*
* f - m v >= 0
* -f + m v + (m - 1) >= 0
*/
static __isl_give isl_set *set_div_slice(__isl_take isl_space *space,
__isl_keep isl_qpolynomial *qp, int div, isl_int v)
{
isl_size total;
isl_basic_set *bset = NULL;
int k;
total = isl_space_dim(space, isl_dim_all);
if (total < 0 || !qp)
goto error;
bset = isl_basic_set_alloc_space(isl_space_copy(space), 0, 0, 2);
k = isl_basic_set_alloc_inequality(bset);
if (k < 0)
goto error;
isl_seq_cpy(bset->ineq[k], qp->div->row[div] + 1, 1 + total);
isl_int_submul(bset->ineq[k][0], v, qp->div->row[div][0]);
k = isl_basic_set_alloc_inequality(bset);
if (k < 0)
goto error;
isl_seq_neg(bset->ineq[k], qp->div->row[div] + 1, 1 + total);
isl_int_addmul(bset->ineq[k][0], v, qp->div->row[div][0]);
isl_int_add(bset->ineq[k][0], bset->ineq[k][0], qp->div->row[div][0]);
isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1);
isl_space_free(space);
return isl_set_from_basic_set(bset);
error:
isl_basic_set_free(bset);
isl_space_free(space);
return NULL;
}
static isl_stat split_periods(__isl_take isl_set *set,
__isl_take isl_qpolynomial *qp, void *user);
/* Create a slice of the domain "set" such that integer division "div"
* has the fixed value "v" and add the results to data->res,
* replacing the integer division by "v" in "qp".
*/
static isl_stat set_div(__isl_take isl_set *set,
__isl_take isl_qpolynomial *qp, int div, isl_int v,
struct isl_split_periods_data *data)
{
int i;
isl_size div_pos;
isl_set *slice;
isl_poly *cst;
slice = set_div_slice(isl_set_get_space(set), qp, div, v);
set = isl_set_intersect(set, slice);
div_pos = isl_qpolynomial_domain_var_offset(qp, isl_dim_div);
if (div_pos < 0)
goto error;
for (i = div + 1; i < qp->div->n_row; ++i) {
if (isl_int_is_zero(qp->div->row[i][2 + div_pos + div]))
continue;
isl_int_addmul(qp->div->row[i][1],
qp->div->row[i][2 + div_pos + div], v);
isl_int_set_si(qp->div->row[i][2 + div_pos + div], 0);
}
cst = isl_poly_rat_cst(qp->dim->ctx, v, qp->dim->ctx->one);
qp = substitute_div(qp, div, cst);
return split_periods(set, qp, data);
error:
isl_set_free(set);
isl_qpolynomial_free(qp);
return isl_stat_error;
}
/* Split the domain "set" such that integer division "div"
* has a fixed value (ranging from "min" to "max") on each slice
* and add the results to data->res.
*/
static isl_stat split_div(__isl_take isl_set *set,
__isl_take isl_qpolynomial *qp, int div, isl_int min, isl_int max,
struct isl_split_periods_data *data)
{
for (; isl_int_le(min, max); isl_int_add_ui(min, min, 1)) {
isl_set *set_i = isl_set_copy(set);
isl_qpolynomial *qp_i = isl_qpolynomial_copy(qp);
if (set_div(set_i, qp_i, div, min, data) < 0)
goto error;
}
isl_set_free(set);
isl_qpolynomial_free(qp);
return isl_stat_ok;
error:
isl_set_free(set);
isl_qpolynomial_free(qp);
return isl_stat_error;
}
/* If "qp" refers to any integer division
* that can only attain "max_periods" distinct values on "set"
* then split the domain along those distinct values.
* Add the results (or the original if no splitting occurs)
* to data->res.
*/
static isl_stat split_periods(__isl_take isl_set *set,
__isl_take isl_qpolynomial *qp, void *user)
{
int i;
isl_pw_qpolynomial *pwqp;
struct isl_split_periods_data *data;
isl_int min, max;
isl_size div_pos;
isl_stat r = isl_stat_ok;
data = (struct isl_split_periods_data *)user;
if (!set || !qp)
goto error;
if (qp->div->n_row == 0) {
pwqp = isl_pw_qpolynomial_alloc(set, qp);
data->res = isl_pw_qpolynomial_add_disjoint(data->res, pwqp);
return isl_stat_ok;
}
div_pos = isl_qpolynomial_domain_var_offset(qp, isl_dim_div);
if (div_pos < 0)
goto error;
isl_int_init(min);
isl_int_init(max);
for (i = 0; i < qp->div->n_row; ++i) {
enum isl_lp_result lp_res;
if (isl_seq_any_non_zero(qp->div->row[i] + 2 + div_pos,
qp->div->n_row))
continue;
lp_res = isl_set_solve_lp(set, 0, qp->div->row[i] + 1,
set->ctx->one, &min, NULL, NULL);
if (lp_res == isl_lp_error)
goto error2;
if (lp_res == isl_lp_unbounded || lp_res == isl_lp_empty)
continue;
isl_int_fdiv_q(min, min, qp->div->row[i][0]);
lp_res = isl_set_solve_lp(set, 1, qp->div->row[i] + 1,
set->ctx->one, &max, NULL, NULL);
if (lp_res == isl_lp_error)
goto error2;
if (lp_res == isl_lp_unbounded || lp_res == isl_lp_empty)
continue;
isl_int_fdiv_q(max, max, qp->div->row[i][0]);
isl_int_sub(max, max, min);
if (isl_int_cmp_si(max, data->max_periods) < 0) {
isl_int_add(max, max, min);
break;
}
}
if (i < qp->div->n_row) {
r = split_div(set, qp, i, min, max, data);
} else {
pwqp = isl_pw_qpolynomial_alloc(set, qp);
data->res = isl_pw_qpolynomial_add_disjoint(data->res, pwqp);
}
isl_int_clear(max);
isl_int_clear(min);
return r;
error2:
isl_int_clear(max);
isl_int_clear(min);
error:
isl_set_free(set);
isl_qpolynomial_free(qp);
return isl_stat_error;
}
/* If any quasi-polynomial in pwqp refers to any integer division
* that can only attain "max_periods" distinct values on its domain
* then split the domain along those distinct values.
*/
__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_split_periods(
__isl_take isl_pw_qpolynomial *pwqp, int max_periods)
{
struct isl_split_periods_data data;
data.max_periods = max_periods;
data.res = isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp));
if (isl_pw_qpolynomial_foreach_piece(pwqp, &split_periods, &data) < 0)
goto error;
isl_pw_qpolynomial_free(pwqp);
return data.res;
error:
isl_pw_qpolynomial_free(data.res);
isl_pw_qpolynomial_free(pwqp);
return NULL;
}
/* Construct a piecewise quasipolynomial that is constant on the given
* domain. In particular, it is
* 0 if cst == 0
* 1 if cst == 1
* infinity if cst == -1
*
* If cst == -1, then explicitly check whether the domain is empty and,
* if so, return 0 instead.
*/
static __isl_give isl_pw_qpolynomial *constant_on_domain(
__isl_take isl_basic_set *bset, int cst)
{
isl_space *space;
isl_qpolynomial *qp;
if (cst < 0 && isl_basic_set_is_empty(bset) == isl_bool_true)
cst = 0;
if (!bset)
return NULL;
bset = isl_basic_set_params(bset);
space = isl_basic_set_get_space(bset);
if (cst < 0)
qp = isl_qpolynomial_infty_on_domain(space);
else if (cst == 0)
qp = isl_qpolynomial_zero_on_domain(space);
else
qp = isl_qpolynomial_one_on_domain(space);
return isl_pw_qpolynomial_alloc(isl_set_from_basic_set(bset), qp);
}
/* Internal data structure for multiplicative_call_factor_pw_qpolynomial.
* "fn" is the function that is called on each factor.
* "pwpq" collects the results.
*/
struct isl_multiplicative_call_data_pw_qpolynomial {
__isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset);
isl_pw_qpolynomial *pwqp;
};
/* Call "fn" on "bset" and return the result,
* but first check if "bset" has any redundant constraints or
* implicit equality constraints.
* If so, there may be further opportunities for detecting factors or
* removing equality constraints, so recursively call
* the top-level isl_basic_set_multiplicative_call.
*/
static __isl_give isl_pw_qpolynomial *multiplicative_call_base(
__isl_take isl_basic_set *bset,
__isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset))
{
isl_size n1, n2, n_eq;
n1 = isl_basic_set_n_constraint(bset);
if (n1 < 0)
bset = isl_basic_set_free(bset);
bset = isl_basic_set_remove_redundancies(bset);
bset = isl_basic_set_detect_equalities(bset);
n2 = isl_basic_set_n_constraint(bset);
n_eq = isl_basic_set_n_equality(bset);
if (n2 < 0 || n_eq < 0)
bset = isl_basic_set_free(bset);
else if (n2 < n1 || n_eq > 0)
return isl_basic_set_multiplicative_call(bset, fn);
return fn(bset);
}
/* isl_factorizer_every_factor_basic_set callback that applies
* data->fn to the factor "bset" and multiplies in the result
* in data->pwqp.
*/
static isl_bool multiplicative_call_factor_pw_qpolynomial(
__isl_keep isl_basic_set *bset, void *user)
{
struct isl_multiplicative_call_data_pw_qpolynomial *data = user;
isl_pw_qpolynomial *res;
bset = isl_basic_set_copy(bset);
res = multiplicative_call_base(bset, data->fn);
data->pwqp = isl_pw_qpolynomial_mul(data->pwqp, res);
if (!data->pwqp)
return isl_bool_error;
return isl_bool_true;
}
/* Factor bset, call fn on each of the factors and return the product.
*
* If no factors can be found, simply call fn on the input.
* Otherwise, construct the factors based on the factorizer,
* call fn on each factor and compute the product.
*/
static __isl_give isl_pw_qpolynomial *compressed_multiplicative_call(
__isl_take isl_basic_set *bset,
__isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset))
{
struct isl_multiplicative_call_data_pw_qpolynomial data = { fn };
isl_space *space;
isl_set *set;
isl_factorizer *f;
isl_qpolynomial *qp;
isl_bool every;
f = isl_basic_set_factorizer(bset);
if (!f)
goto error;
if (f->n_group == 0) {
isl_factorizer_free(f);
return multiplicative_call_base(bset, fn);
}
space = isl_basic_set_get_space(bset);
space = isl_space_params(space);
set = isl_set_universe(isl_space_copy(space));
qp = isl_qpolynomial_one_on_domain(space);
data.pwqp = isl_pw_qpolynomial_alloc(set, qp);
every = isl_factorizer_every_factor_basic_set(f,
&multiplicative_call_factor_pw_qpolynomial, &data);
if (every < 0)
data.pwqp = isl_pw_qpolynomial_free(data.pwqp);
isl_basic_set_free(bset);
isl_factorizer_free(f);
return data.pwqp;
error:
isl_basic_set_free(bset);
return NULL;
}
/* Factor bset, call fn on each of the factors and return the product.
* The function is assumed to evaluate to zero on empty domains,
* to one on zero-dimensional domains and to infinity on unbounded domains
* and will not be called explicitly on zero-dimensional or unbounded domains.
*
* We first check for some special cases and remove all equalities.
* Then we hand over control to compressed_multiplicative_call.
*/
__isl_give isl_pw_qpolynomial *isl_basic_set_multiplicative_call(
__isl_take isl_basic_set *bset,
__isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset))
{
isl_bool bounded;
isl_size dim;
isl_morph *morph;
isl_pw_qpolynomial *pwqp;
if (!bset)
return NULL;
if (isl_basic_set_plain_is_empty(bset))
return constant_on_domain(bset, 0);
dim = isl_basic_set_dim(bset, isl_dim_set);
if (dim < 0)
goto error;
if (dim == 0)
return constant_on_domain(bset, 1);
bounded = isl_basic_set_is_bounded(bset);
if (bounded < 0)
goto error;
if (!bounded)
return constant_on_domain(bset, -1);
if (bset->n_eq == 0)
return compressed_multiplicative_call(bset, fn);
morph = isl_basic_set_full_compression(bset);
bset = isl_morph_basic_set(isl_morph_copy(morph), bset);
pwqp = compressed_multiplicative_call(bset, fn);
morph = isl_morph_dom_params(morph);
morph = isl_morph_ran_params(morph);
morph = isl_morph_inverse(morph);
pwqp = isl_pw_qpolynomial_morph_domain(pwqp, morph);
return pwqp;
error:
isl_basic_set_free(bset);
return NULL;
}
/* Drop all floors in "qp", turning each integer division [a/m] into
* a rational division a/m. If "down" is set, then the integer division
* is replaced by (a-(m-1))/m instead.
*/
static __isl_give isl_qpolynomial *qp_drop_floors(
__isl_take isl_qpolynomial *qp, int down)
{
int i;
isl_poly *s;
if (!qp)
return NULL;
if (qp->div->n_row == 0)
return qp;
qp = isl_qpolynomial_cow(qp);
if (!qp)
return NULL;
for (i = qp->div->n_row - 1; i >= 0; --i) {
if (down) {
isl_int_sub(qp->div->row[i][1],
qp->div->row[i][1], qp->div->row[i][0]);
isl_int_add_ui(qp->div->row[i][1],
qp->div->row[i][1], 1);
}
s = isl_poly_from_affine(qp->dim->ctx, qp->div->row[i] + 1,
qp->div->row[i][0], qp->div->n_col - 1);
qp = substitute_div(qp, i, s);
if (!qp)
return NULL;
}
return qp;
}
/* Drop all floors in "pwqp", turning each integer division [a/m] into
* a rational division a/m.
*/
static __isl_give isl_pw_qpolynomial *pwqp_drop_floors(
__isl_take isl_pw_qpolynomial *pwqp)
{
int i;
if (!pwqp)
return NULL;
if (isl_pw_qpolynomial_is_zero(pwqp))
return pwqp;
pwqp = isl_pw_qpolynomial_cow(pwqp);
if (!pwqp)
return NULL;
for (i = 0; i < pwqp->n; ++i) {
pwqp->p[i].qp = qp_drop_floors(pwqp->p[i].qp, 0);
if (!pwqp->p[i].qp)
goto error;
}
return pwqp;
error:
isl_pw_qpolynomial_free(pwqp);
return NULL;
}
/* Adjust all the integer divisions in "qp" such that they are at least
* one over the given orthant (identified by "signs"). This ensures
* that they will still be non-negative even after subtracting (m-1)/m.
*
* In particular, f is replaced by f' + v, changing f = [a/m]
* to f' = [(a - m v)/m].
* If the constant term k in a is smaller than m,
* the constant term of v is set to floor(k/m) - 1.
* For any other term, if the coefficient c and the variable x have
* the same sign, then no changes are needed.
* Otherwise, if the variable is positive (and c is negative),
* then the coefficient of x in v is set to floor(c/m).
* If the variable is negative (and c is positive),
* then the coefficient of x in v is set to ceil(c/m).
*/
static __isl_give isl_qpolynomial *make_divs_pos(__isl_take isl_qpolynomial *qp,
int *signs)
{
int i, j;
isl_size div_pos;
isl_vec *v = NULL;
isl_poly *s;
qp = isl_qpolynomial_cow(qp);
div_pos = isl_qpolynomial_domain_var_offset(qp, isl_dim_div);
if (div_pos < 0)
return isl_qpolynomial_free(qp);
qp->div = isl_mat_cow(qp->div);
if (!qp->div)
goto error;
v = isl_vec_alloc(qp->div->ctx, qp->div->n_col - 1);
for (i = 0; i < qp->div->n_row; ++i) {
isl_int *row = qp->div->row[i];
v = isl_vec_clr(v);
if (!v)
goto error;
if (isl_int_lt(row[1], row[0])) {
isl_int_fdiv_q(v->el[0], row[1], row[0]);
isl_int_sub_ui(v->el[0], v->el[0], 1);
isl_int_submul(row[1], row[0], v->el[0]);
}
for (j = 0; j < div_pos; ++j) {
if (isl_int_sgn(row[2 + j]) * signs[j] >= 0)
continue;
if (signs[j] < 0)
isl_int_cdiv_q(v->el[1 + j], row[2 + j], row[0]);
else
isl_int_fdiv_q(v->el[1 + j], row[2 + j], row[0]);
isl_int_submul(row[2 + j], row[0], v->el[1 + j]);
}
for (j = 0; j < i; ++j) {
if (isl_int_sgn(row[2 + div_pos + j]) >= 0)
continue;
isl_int_fdiv_q(v->el[1 + div_pos + j],
row[2 + div_pos + j], row[0]);
isl_int_submul(row[2 + div_pos + j],
row[0], v->el[1 + div_pos + j]);
}
for (j = i + 1; j < qp->div->n_row; ++j) {
if (isl_int_is_zero(qp->div->row[j][2 + div_pos + i]))
continue;
isl_seq_combine(qp->div->row[j] + 1,
qp->div->ctx->one, qp->div->row[j] + 1,
qp->div->row[j][2 + div_pos + i], v->el,
v->size);
}
isl_int_set_si(v->el[1 + div_pos + i], 1);
s = isl_poly_from_affine(qp->dim->ctx, v->el,
qp->div->ctx->one, v->size);
qp->poly = isl_poly_subs(qp->poly, div_pos + i, 1, &s);
isl_poly_free(s);
if (!qp->poly)
goto error;
}
isl_vec_free(v);
return qp;
error:
isl_vec_free(v);
isl_qpolynomial_free(qp);
return NULL;
}
struct isl_to_poly_data {
int sign;
isl_pw_qpolynomial *res;
isl_qpolynomial *qp;
};
/* Appoximate data->qp by a polynomial on the orthant identified by "signs".
* We first make all integer divisions positive and then split the
* quasipolynomials into terms with sign data->sign (the direction
* of the requested approximation) and terms with the opposite sign.
* In the first set of terms, each integer division [a/m] is
* overapproximated by a/m, while in the second it is underapproximated
* by (a-(m-1))/m.
*/
static isl_stat to_polynomial_on_orthant(__isl_take isl_set *orthant,
int *signs, void *user)
{
struct isl_to_poly_data *data = user;
isl_pw_qpolynomial *t;
isl_qpolynomial *qp, *up, *down;
qp = isl_qpolynomial_copy(data->qp);
qp = make_divs_pos(qp, signs);
up = isl_qpolynomial_terms_of_sign(qp, signs, data->sign);
up = qp_drop_floors(up, 0);
down = isl_qpolynomial_terms_of_sign(qp, signs, -data->sign);
down = qp_drop_floors(down, 1);
isl_qpolynomial_free(qp);
qp = isl_qpolynomial_add(up, down);
t = isl_pw_qpolynomial_alloc(orthant, qp);
data->res = isl_pw_qpolynomial_add_disjoint(data->res, t);
return isl_stat_ok;
}
/* Approximate each quasipolynomial by a polynomial. If "sign" is positive,
* the polynomial will be an overapproximation. If "sign" is negative,
* it will be an underapproximation. If "sign" is zero, the approximation
* will lie somewhere in between.
*
* In particular, is sign == 0, we simply drop the floors, turning
* the integer divisions into rational divisions.
* Otherwise, we split the domains into orthants, make all integer divisions
* positive and then approximate each [a/m] by either a/m or (a-(m-1))/m,
* depending on the requested sign and the sign of the term in which
* the integer division appears.
*/
__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
__isl_take isl_pw_qpolynomial *pwqp, int sign)
{
int i;
struct isl_to_poly_data data;
if (sign == 0)
return pwqp_drop_floors(pwqp);
if (!pwqp)
return NULL;
data.sign = sign;
data.res = isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp));
for (i = 0; i < pwqp->n; ++i) {
if (pwqp->p[i].qp->div->n_row == 0) {
isl_pw_qpolynomial *t;
t = isl_pw_qpolynomial_alloc(
isl_set_copy(pwqp->p[i].set),
isl_qpolynomial_copy(pwqp->p[i].qp));
data.res = isl_pw_qpolynomial_add_disjoint(data.res, t);
continue;
}
data.qp = pwqp->p[i].qp;
if (isl_set_foreach_orthant(pwqp->p[i].set,
&to_polynomial_on_orthant, &data) < 0)
goto error;
}
isl_pw_qpolynomial_free(pwqp);
return data.res;
error:
isl_pw_qpolynomial_free(pwqp);
isl_pw_qpolynomial_free(data.res);
return NULL;
}
static __isl_give isl_pw_qpolynomial *poly_entry(
__isl_take isl_pw_qpolynomial *pwqp, void *user)
{
int *sign = user;
return isl_pw_qpolynomial_to_polynomial(pwqp, *sign);
}
__isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_to_polynomial(
__isl_take isl_union_pw_qpolynomial *upwqp, int sign)
{
return isl_union_pw_qpolynomial_transform_inplace(upwqp,
&poly_entry, &sign);
}
/* Return an isl_aff that is equivalent to "qp".
*/
__isl_give isl_aff *isl_qpolynomial_as_aff(__isl_take isl_qpolynomial *qp)
{
isl_local_space *ls;
isl_vec *vec;
isl_aff *aff;
isl_bool is_affine;
is_affine = isl_qpolynomial_isa_aff(qp);
if (is_affine < 0)
goto error;
if (!is_affine)
isl_die(qp->dim->ctx, isl_error_invalid,
"input quasi-polynomial not affine", goto error);
ls = isl_qpolynomial_get_domain_local_space(qp);
vec = isl_qpolynomial_extract_affine(qp);
aff = isl_aff_alloc_vec(ls, vec);
isl_qpolynomial_free(qp);
return aff;
error:
isl_qpolynomial_free(qp);
return NULL;
}
__isl_give isl_basic_map *isl_basic_map_from_qpolynomial(
__isl_take isl_qpolynomial *qp)
{
return isl_basic_map_from_aff(isl_qpolynomial_as_aff(qp));
}
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
C
1
https://gitee.com/mirrors/isl.git
git@gitee.com:mirrors/isl.git
mirrors
isl
isl
master

搜索帮助