3 Star 0 Fork 1

Gitee 极速下载/isl

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
此仓库是为了提升国内下载速度的镜像仓库,每日同步一次。 原始仓库: https://repo.or.cz/isl.git
克隆/下载
isl_bound.c 15.75 KB
一键复制 编辑 原始数据 按行查看 历史
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543
/*
* Copyright 2010 INRIA Saclay
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
* Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
* 91893 Orsay, France
*/
#include <isl/aff.h>
#include <isl/val.h>
#include <isl_ctx_private.h>
#include <isl_map_private.h>
#include <isl_bound.h>
#include <isl_bernstein.h>
#include <isl_range.h>
#include <isl_polynomial_private.h>
#include <isl_options_private.h>
/* Given a polynomial "poly" that is constant in terms
* of the domain variables, construct a polynomial reduction
* of type "type" that is equal to "poly" on "bset",
* with the domain projected onto the parameters.
*/
__isl_give isl_pw_qpolynomial_fold *isl_qpolynomial_cst_bound(
__isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly,
enum isl_fold type, isl_bool *tight)
{
isl_set *dom;
isl_qpolynomial_fold *fold;
isl_pw_qpolynomial_fold *pwf;
fold = isl_qpolynomial_fold_alloc(type, poly);
dom = isl_set_from_basic_set(bset);
if (tight)
*tight = isl_bool_true;
pwf = isl_pw_qpolynomial_fold_alloc(type, dom, fold);
return isl_pw_qpolynomial_fold_project_domain_on_params(pwf);
}
/* Add the bound "pwf", which is not known to be tight,
* to the output of "bound".
*/
isl_stat isl_bound_add(struct isl_bound *bound,
__isl_take isl_pw_qpolynomial_fold *pwf)
{
bound->pwf = isl_pw_qpolynomial_fold_fold(bound->pwf, pwf);
return isl_stat_non_null(bound->pwf);
}
/* Add the bound "pwf", which is known to be tight,
* to the output of "bound".
*/
isl_stat isl_bound_add_tight(struct isl_bound *bound,
__isl_take isl_pw_qpolynomial_fold *pwf)
{
bound->pwf_tight = isl_pw_qpolynomial_fold_fold(bound->pwf_tight, pwf);
return isl_stat_non_null(bound->pwf);
}
/* Given a polynomial "poly" that is constant in terms
* of the domain variables and the domain "bset",
* construct the corresponding polynomial reduction and
* add it to the tight bounds of "bound".
*/
static isl_stat add_constant_poly(__isl_take isl_basic_set *bset,
__isl_take isl_qpolynomial *poly, struct isl_bound *bound)
{
isl_pw_qpolynomial_fold *pwf;
pwf = isl_qpolynomial_cst_bound(bset, poly, bound->type, NULL);
return isl_bound_add_tight(bound, pwf);
}
/* Compute a bound on the polynomial defined over the parametric polytope
* using either range propagation or bernstein expansion and
* store the result in bound->pwf and bound->pwf_tight.
* Since bernstein expansion requires bounded domains, we apply
* range propagation on unbounded domains. Otherwise, we respect the choice
* of the user.
*
* If the polynomial does not depend on the set variables
* then the bound is equal to the polynomial and
* it can be added to "bound" directly.
*/
static isl_stat compressed_guarded_poly_bound(__isl_take isl_basic_set *bset,
__isl_take isl_qpolynomial *poly, struct isl_bound *bound)
{
isl_ctx *ctx;
int bounded;
int degree;
if (!bset || !poly)
goto error;
degree = isl_qpolynomial_degree(poly);
if (degree < -1)
goto error;
if (degree <= 0)
return add_constant_poly(bset, poly, bound);
ctx = isl_basic_set_get_ctx(bset);
if (ctx->opt->bound == ISL_BOUND_RANGE)
return isl_qpolynomial_bound_on_domain_range(bset, poly, bound);
bounded = isl_basic_set_is_bounded(bset);
if (bounded < 0)
goto error;
if (bounded)
return isl_qpolynomial_bound_on_domain_bernstein(bset, poly, bound);
else
return isl_qpolynomial_bound_on_domain_range(bset, poly, bound);
error:
isl_basic_set_free(bset);
isl_qpolynomial_free(poly);
return isl_stat_error;
}
static isl_stat unwrapped_guarded_poly_bound(__isl_take isl_basic_set *bset,
__isl_take isl_qpolynomial *poly, struct isl_bound *bound)
{
isl_pw_qpolynomial_fold *top_pwf;
isl_pw_qpolynomial_fold *top_pwf_tight;
isl_space *space;
isl_morph *morph;
isl_stat r;
bset = isl_basic_set_detect_equalities(bset);
if (!bset)
goto error;
if (bset->n_eq == 0)
return compressed_guarded_poly_bound(bset, poly, bound);
morph = isl_basic_set_full_compression(bset);
bset = isl_morph_basic_set(isl_morph_copy(morph), bset);
poly = isl_qpolynomial_morph_domain(poly, isl_morph_copy(morph));
space = isl_morph_get_ran_space(morph);
space = isl_space_params(space);
top_pwf = bound->pwf;
top_pwf_tight = bound->pwf_tight;
space = isl_space_from_domain(space);
space = isl_space_add_dims(space, isl_dim_out, 1);
bound->pwf = isl_pw_qpolynomial_fold_zero(isl_space_copy(space),
bound->type);
bound->pwf_tight = isl_pw_qpolynomial_fold_zero(space, bound->type);
r = compressed_guarded_poly_bound(bset, poly, bound);
morph = isl_morph_dom_params(morph);
morph = isl_morph_ran_params(morph);
morph = isl_morph_inverse(morph);
bound->pwf = isl_pw_qpolynomial_fold_morph_domain(bound->pwf,
isl_morph_copy(morph));
bound->pwf_tight = isl_pw_qpolynomial_fold_morph_domain(
bound->pwf_tight, morph);
isl_bound_add(bound, top_pwf);
isl_bound_add_tight(bound, top_pwf_tight);
return r;
error:
isl_basic_set_free(bset);
isl_qpolynomial_free(poly);
return isl_stat_error;
}
/* Update bound->pwf and bound->pwf_tight with a bound
* of type bound->type on the (quasi-)polynomial "qp" over the domain "bset",
* by calling "unwrapped" on unwrapped versions of "bset and "qp".
* If "qp" is a polynomial, then "unwrapped" will also be called
* on a polynomial.
*
* If the original problem did not have a wrapped relation in the domain,
* then call "unwrapped" directly.
*
* Otherwise, the bound should be computed over the range
* of the wrapped relation. Temporarily treat the domain dimensions
* of this wrapped relation as parameters, compute a bound using "unwrapped"
* in terms of these and the original parameters,
* turn the parameters back into set dimensions and
* add the results to bound->pwf and bound->pwf_tight.
*
* Note that even though "bset" is known to live in the same space
* as the domain of "qp", the names of the set dimensions
* may be different (or missing). Make sure the naming is exactly
* the same before turning these dimensions into parameters
* to ensure that the spaces are still the same after
* this operation.
*/
static isl_stat unwrap(__isl_take isl_basic_set *bset,
__isl_take isl_qpolynomial *qp,
isl_stat (*unwrapped)(__isl_take isl_basic_set *bset,
__isl_take isl_qpolynomial *qp, struct isl_bound *bound),
struct isl_bound *bound)
{
isl_space *space;
isl_pw_qpolynomial_fold *top_pwf;
isl_pw_qpolynomial_fold *top_pwf_tight;
isl_size nparam;
isl_size n_in;
isl_stat r;
if (!bound->wrapping)
return unwrapped(bset, qp, bound);
nparam = isl_space_dim(bound->dim, isl_dim_param);
n_in = isl_space_dim(bound->dim, isl_dim_in);
if (nparam < 0 || n_in < 0)
goto error;
space = isl_qpolynomial_get_domain_space(qp);
bset = isl_basic_set_reset_space(bset, space);
bset = isl_basic_set_move_dims(bset, isl_dim_param, nparam,
isl_dim_set, 0, n_in);
qp = isl_qpolynomial_move_dims(qp, isl_dim_param, nparam,
isl_dim_in, 0, n_in);
space = isl_basic_set_get_space(bset);
space = isl_space_params(space);
top_pwf = bound->pwf;
top_pwf_tight = bound->pwf_tight;
space = isl_space_from_domain(space);
space = isl_space_add_dims(space, isl_dim_out, 1);
bound->pwf = isl_pw_qpolynomial_fold_zero(isl_space_copy(space),
bound->type);
bound->pwf_tight = isl_pw_qpolynomial_fold_zero(space, bound->type);
r = unwrapped(bset, qp, bound);
bound->pwf = isl_pw_qpolynomial_fold_reset_space(bound->pwf,
isl_space_copy(bound->dim));
bound->pwf_tight = isl_pw_qpolynomial_fold_reset_space(bound->pwf_tight,
isl_space_copy(bound->dim));
isl_bound_add(bound, top_pwf);
isl_bound_add_tight(bound, top_pwf_tight);
return r;
error:
isl_basic_set_free(bset);
isl_qpolynomial_free(qp);
return isl_stat_error;
}
/* Update bound->pwf and bound->pwf_tight with a bound
* of type bound->type on the polynomial "poly" over the domain "bset",
* handling any wrapping in the domain.
*/
static isl_stat guarded_poly_bound(__isl_take isl_basic_set *bset,
__isl_take isl_qpolynomial *poly, void *user)
{
struct isl_bound *bound = (struct isl_bound *)user;
return unwrap(bset, poly, &unwrapped_guarded_poly_bound, bound);
}
/* Is "bset" bounded and is "qp" a quasi-affine expression?
*/
static isl_bool is_bounded_affine(__isl_keep isl_basic_set *bset,
__isl_keep isl_qpolynomial *qp)
{
isl_bool affine;
affine = isl_qpolynomial_isa_aff(qp);
if (affine < 0 || !affine)
return affine;
return isl_basic_set_is_bounded(bset);
}
/* Update bound->pwf and bound->pwf_tight with a bound
* of type bound->type on the quasi-polynomial "qp" over the domain "bset",
* for the case where "bset" is bounded and
* "qp" is a quasi-affine expression and
* they have both been unwrapped already if needed.
*
* Consider the set of possible function values of "qp" over "bset" and
* take the minimum or maximum value in this set, depending
* on whether a lower or an upper bound is being computed.
* Do this by calling isl_set_lexmin_pw_multi_aff or
* isl_set_lexmax_pw_multi_aff, which compute a regular minimum or maximum
* since the set is one-dimensional.
* Since this computation is exact, the bound is always tight.
*
* Note that the minimum or maximum integer value is being computed,
* so if "qp" has some non-trivial denominator, then it needs
* to be multiplied out first and then taken into account again
* after computing the minimum or maximum.
*/
static isl_stat unwrapped_affine_qp(__isl_take isl_basic_set *bset,
__isl_take isl_qpolynomial *qp, struct isl_bound *bound)
{
isl_val *d;
isl_aff *aff;
isl_basic_map *bmap;
isl_set *range;
isl_pw_multi_aff *opt;
isl_pw_aff *pa;
isl_pw_qpolynomial *pwqp;
isl_pw_qpolynomial_fold *pwf;
aff = isl_qpolynomial_as_aff(qp);
d = isl_aff_get_denominator_val(aff);
aff = isl_aff_scale_val(aff, isl_val_copy(d));
bmap = isl_basic_map_from_aff(aff);
bmap = isl_basic_map_intersect_domain(bmap, bset);
range = isl_set_from_basic_set(isl_basic_map_range(bmap));
if (bound->type == isl_fold_min)
opt = isl_set_lexmin_pw_multi_aff(range);
else
opt = isl_set_lexmax_pw_multi_aff(range);
pa = isl_pw_multi_aff_get_at(opt, 0);
isl_pw_multi_aff_free(opt);
pa = isl_pw_aff_scale_down_val(pa, d);
pwqp = isl_pw_qpolynomial_from_pw_aff(pa);
pwf = isl_pw_qpolynomial_fold_from_pw_qpolynomial(bound->type, pwqp);
bound->pwf_tight = isl_pw_qpolynomial_fold_fold(bound->pwf_tight, pwf);
return isl_stat_non_null(bound->pwf_tight);
}
/* Update bound->pwf and bound->pwf_tight with a bound
* of type bound->type on the quasi-polynomial "qp" over the domain bound->bset,
* for the case where bound->bset is bounded and
* "qp" is a quasi-affine expression,
* handling any wrapping in the domain.
*/
static isl_stat affine_qp(__isl_take isl_qpolynomial *qp,
struct isl_bound *bound)
{
isl_basic_set *bset;
bset = isl_basic_set_copy(bound->bset);
return unwrap(bset, qp, &unwrapped_affine_qp, bound);
}
/* Update bound->pwf and bound->pwf_tight with a bound
* of type bound->type on the quasi-polynomial "qp" over the domain bound->bset.
*
* If bound->bset is bounded and if "qp" is a quasi-affine expression,
* then use a specialized version.
*
* Otherwise, treat the integer divisions as extra variables and
* compute a bound over the polynomial in terms of the original and
* the extra variables.
*/
static isl_stat guarded_qp(__isl_take isl_qpolynomial *qp, void *user)
{
struct isl_bound *bound = (struct isl_bound *)user;
isl_stat r;
isl_bool bounded_affine;
bounded_affine = is_bounded_affine(bound->bset, qp);
if (bounded_affine < 0)
qp = isl_qpolynomial_free(qp);
else if (bounded_affine)
return affine_qp(qp, bound);
r = isl_qpolynomial_as_polynomial_on_domain(qp, bound->bset,
&guarded_poly_bound, user);
isl_qpolynomial_free(qp);
return r;
}
static isl_stat basic_guarded_fold(__isl_take isl_basic_set *bset, void *user)
{
struct isl_bound *bound = (struct isl_bound *)user;
isl_stat r;
bound->bset = bset;
r = isl_qpolynomial_fold_foreach_qpolynomial(bound->fold,
&guarded_qp, user);
isl_basic_set_free(bset);
return r;
}
static isl_stat guarded_fold(__isl_take isl_set *set,
__isl_take isl_qpolynomial_fold *fold, void *user)
{
struct isl_bound *bound = (struct isl_bound *)user;
if (!set || !fold)
goto error;
set = isl_set_make_disjoint(set);
bound->fold = fold;
bound->type = isl_qpolynomial_fold_get_type(fold);
if (isl_set_foreach_basic_set(set, &basic_guarded_fold, bound) < 0)
goto error;
isl_set_free(set);
isl_qpolynomial_fold_free(fold);
return isl_stat_ok;
error:
isl_set_free(set);
isl_qpolynomial_fold_free(fold);
return isl_stat_error;
}
__isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_bound(
__isl_take isl_pw_qpolynomial_fold *pwf, isl_bool *tight)
{
isl_size nvar;
struct isl_bound bound;
isl_bool covers;
if (!pwf)
return NULL;
bound.dim = isl_pw_qpolynomial_fold_get_domain_space(pwf);
bound.wrapping = isl_space_is_wrapping(bound.dim);
if (bound.wrapping)
bound.dim = isl_space_unwrap(bound.dim);
nvar = isl_space_dim(bound.dim, isl_dim_out);
if (nvar < 0)
bound.dim = isl_space_free(bound.dim);
bound.dim = isl_space_domain(bound.dim);
bound.dim = isl_space_from_domain(bound.dim);
bound.dim = isl_space_add_dims(bound.dim, isl_dim_out, 1);
if (nvar == 0) {
if (tight)
*tight = isl_bool_true;
return isl_pw_qpolynomial_fold_reset_space(pwf, bound.dim);
}
if (isl_pw_qpolynomial_fold_is_zero(pwf)) {
enum isl_fold type = pwf->type;
isl_pw_qpolynomial_fold_free(pwf);
if (tight)
*tight = isl_bool_true;
return isl_pw_qpolynomial_fold_zero(bound.dim, type);
}
bound.pwf = isl_pw_qpolynomial_fold_zero(isl_space_copy(bound.dim),
pwf->type);
bound.pwf_tight = isl_pw_qpolynomial_fold_zero(isl_space_copy(bound.dim),
pwf->type);
bound.check_tight = !!tight;
if (isl_pw_qpolynomial_fold_foreach_lifted_piece(pwf,
guarded_fold, &bound) < 0)
goto error;
covers = isl_pw_qpolynomial_fold_covers(bound.pwf_tight, bound.pwf);
if (covers < 0)
goto error;
if (tight)
*tight = covers;
isl_space_free(bound.dim);
isl_pw_qpolynomial_fold_free(pwf);
if (covers) {
isl_pw_qpolynomial_fold_free(bound.pwf);
return bound.pwf_tight;
}
bound.pwf = isl_pw_qpolynomial_fold_fold(bound.pwf, bound.pwf_tight);
return bound.pwf;
error:
isl_pw_qpolynomial_fold_free(bound.pwf_tight);
isl_pw_qpolynomial_fold_free(bound.pwf);
isl_pw_qpolynomial_fold_free(pwf);
isl_space_free(bound.dim);
return NULL;
}
__isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_bound(
__isl_take isl_pw_qpolynomial *pwqp, enum isl_fold type,
isl_bool *tight)
{
isl_pw_qpolynomial_fold *pwf;
pwf = isl_pw_qpolynomial_fold_from_pw_qpolynomial(type, pwqp);
return isl_pw_qpolynomial_fold_bound(pwf, tight);
}
struct isl_union_bound_data {
enum isl_fold type;
isl_bool tight;
isl_union_pw_qpolynomial_fold *res;
};
static isl_stat bound_pw(__isl_take isl_pw_qpolynomial *pwqp, void *user)
{
struct isl_union_bound_data *data = user;
isl_pw_qpolynomial_fold *pwf;
pwf = isl_pw_qpolynomial_bound(pwqp, data->type,
data->tight ? &data->tight : NULL);
data->res = isl_union_pw_qpolynomial_fold_fold_pw_qpolynomial_fold(
data->res, pwf);
return isl_stat_ok;
}
__isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_bound(
__isl_take isl_union_pw_qpolynomial *upwqp,
enum isl_fold type, isl_bool *tight)
{
isl_space *space;
struct isl_union_bound_data data = { type, 1, NULL };
if (!upwqp)
return NULL;
if (!tight)
data.tight = isl_bool_false;
space = isl_union_pw_qpolynomial_get_space(upwqp);
data.res = isl_union_pw_qpolynomial_fold_zero(space, type);
if (isl_union_pw_qpolynomial_foreach_pw_qpolynomial(upwqp,
&bound_pw, &data) < 0)
goto error;
isl_union_pw_qpolynomial_free(upwqp);
if (tight)
*tight = data.tight;
return data.res;
error:
isl_union_pw_qpolynomial_free(upwqp);
isl_union_pw_qpolynomial_fold_free(data.res);
return NULL;
}
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
C
1
https://gitee.com/mirrors/isl.git
git@gitee.com:mirrors/isl.git
mirrors
isl
isl
master

搜索帮助