3 Star 11 Fork 7

Gitee 极速下载/grok-1

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
此仓库是为了提升国内下载速度的镜像仓库,每日同步一次。 原始仓库: https://github.com/xai-org/grok-1
克隆/下载
runners.py 21.33 KB
一键复制 编辑 原始数据 按行查看 历史
Igor Babuschkin 提交于 2024-03-14 15:03 . Add initial code
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605
# Copyright 2024 X.AI Corp.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import bisect
import functools
import logging
import math
import re
from dataclasses import dataclass
from typing import Any, Callable, NamedTuple, Optional, Tuple
import haiku as hk
import jax
import jax.experimental.pjit as pjit
import jax.numpy as jnp
import numpy as np
import sentencepiece
from jax.experimental import mesh_utils
from jax.sharding import PartitionSpec as P
from jax.typing import ArrayLike
import checkpoint as xai_checkpoint
from model import (
LanguageModelConfig,
LanguageModelOutput,
TrainingState,
apply_rules,
Memory,
KVMemory,
)
logger = logging.getLogger(__name__)
rank_logger = logging.getLogger("rank")
TOP_K = 8
class SampleSettings(NamedTuple):
temperature: ArrayLike
nucleus_p: ArrayLike
mask: ArrayLike
# Whether a given batch element is actively used. [B]
active: ArrayLike
class SampleOutput(NamedTuple):
token_id: ArrayLike
prob: ArrayLike
top_k_token_ids: ArrayLike
top_k_probs: ArrayLike
def insert_slice(memory: Memory, slice, length, i):
slice = Memory(
layers=[
KVMemory(layer.k, layer.v, step=jnp.array([length]))
for layer in slice.layers
],
)
return jax.tree_map(lambda m, u: jax.lax.dynamic_update_index_in_dim(m, u[0], i, axis=0),
memory, slice)
def pad_to_size(x, size):
if x.shape[0] > size:
# Left truncate if the context is too long.
x = x[-size:]
return np.pad(x, [0, size - x.shape[0]], mode="constant", constant_values=0)
def top_p_filter(logits: jax.Array, top_p: jax.Array) -> jax.Array:
"""Performs nucleus filtering on logits."""
assert logits.ndim == top_p.ndim, f"Expected {logits.ndim} equal {top_p.ndim}"
sorted_logits = jax.lax.sort(logits, is_stable=False)
sorted_probs = jax.nn.softmax(sorted_logits)
threshold_idx = jnp.argmax(jnp.cumsum(sorted_probs, -1) >= 1 - top_p, axis=-1)
threshold_largest_logits = jnp.take_along_axis(
sorted_logits, threshold_idx[..., jnp.newaxis], axis=-1
)
assert threshold_largest_logits.shape == logits.shape[:-1] + (1,)
mask = logits >= threshold_largest_logits
# Set unused logits to -inf.
logits = jnp.where(mask, logits, -1e10)
return logits
def sample_token(
rngs: jax.random.PRNGKey,
lm_outputs: LanguageModelOutput,
settings: SampleSettings,
) -> SampleOutput:
# Expand the settings shape to match the logit shape.
settings = SampleSettings(
temperature=jnp.expand_dims(settings.temperature, (1, 2)), # Input [B], output [B, 1, 1].
nucleus_p=jnp.expand_dims(settings.nucleus_p, (1, 2)), # Input [B], output [B, 1, 1].
mask=jnp.expand_dims(settings.mask, 1), # Input [B, V], output [B, 1, V].
active=settings.active, # [B].
)
logits = lm_outputs.logits / settings.temperature.astype(lm_outputs.logits.dtype)
# Mask out all disallowed tokens by assigning them a near-zero probability.
logits = jnp.where(settings.mask, logits, -1e10)
# Mask out all tokens that don't fall into the p-th percentile.
logits = top_p_filter(logits, settings.nucleus_p.astype(logits.dtype))
new_token = jax.vmap(jax.random.categorical)(rngs, logits)
probabilities = jax.nn.softmax(logits)
token_prob = jnp.take_along_axis(probabilities, jnp.expand_dims(new_token, 1), axis=2)
token_prob = jnp.squeeze(token_prob, 1)
# Gather the top-k tokens and probabilities.
top_k_probs, top_k_token_ids = jax.lax.top_k(probabilities, TOP_K)
top_k_probs = jnp.squeeze(top_k_probs, 1)
top_k_token_ids = jnp.squeeze(top_k_token_ids, 1)
return SampleOutput(
new_token,
token_prob,
top_k_token_ids,
top_k_probs,
)
@dataclass
class ModelRunner:
model: LanguageModelConfig
bs_per_device: float = 2.0
load_rename_rules: Optional[list[tuple[str, str]]] = None
load_exclude_rules: Optional[list[str]] = None
rng_seed: int = 42 # Initial rng seed.
transform_forward: bool = False
checkpoint_path: str = ""
def make_forward_fn(self, mesh: Any):
def forward(tokens):
out = self.model.make(mesh=mesh)(tokens)
return out, None
if self.transform_forward:
forward = hk.transform(forward)
return forward
def initialize(
self,
init_data,
local_mesh_config: tuple[int, int],
between_hosts_config: tuple[int, int],
):
num_replicas = math.prod(between_hosts_config)
self.model.initialize()
self.model.fprop_dtype = jnp.bfloat16
num_local_gpus = len(jax.local_devices())
# Calculate the global batch size from the local batch size.
self.batch_size = int(self.bs_per_device * num_local_gpus * num_replicas)
# Calculate the batch size per host from the global batch size.
self.local_batch_size = self.batch_size // jax.process_count()
self.local_mesh_config = local_mesh_config
self.between_hosts_config = between_hosts_config
rank_logger.info(
f"Initializing mesh for {self.local_mesh_config=} {self.between_hosts_config=}..."
)
self.mesh = make_mesh(self.local_mesh_config, self.between_hosts_config)
self.forward = self.make_forward_fn(mesh=self.mesh)
self.logits_fn = hk.transform(lambda tokens: self.forward(tokens)[0])
self.eval_forward = self.make_forward_fn(mesh=self.mesh)
self.logits_eval_fn = hk.transform(lambda tokens: self.eval_forward(tokens)[0])
if self.transform_forward:
self.state_sharding = self.get_state_sharding(init_data)
rank_logger.info(f"State sharding type: {type(self.state_sharding)}")
self.init_fn = pjit.pjit(self.init, out_shardings=self.state_sharding)
def init(self, rng: jax.Array, data) -> TrainingState:
assert self.transform_forward
rng, init_rng = jax.random.split(rng)
params = self.forward.init(init_rng, data["inputs"])
return TrainingState(params=params)
def get_state_sharding(self, init_data):
assert self.transform_forward
rng = jax.random.PRNGKey(self.rng_seed)
rank_logger.info(f"partition rules: {self.model.partition_rules}")
with self.mesh:
shapes = jax.eval_shape(self.init, rng, init_data)
sharding = jax.tree_util.tree_map_with_path(
apply_rules(self.model.partition_rules()),
shapes,
)
return sharding
def load_or_init(
self,
init_data: Any,
from_checkpoint: bool = True,
init_fn: Optional[Callable] = None,
):
rng = jax.random.PRNGKey(self.rng_seed)
if not self.checkpoint_path or not from_checkpoint:
rank_logger.info("Initializing model...")
with self.mesh:
if init_fn is not None:
state = init_fn(rng, init_data)
else:
assert self.transform_forward
state = self.init_fn(rng, init_data)
rank_logger.info("Model state is newly initialized.")
else:
with self.mesh:
if init_fn:
state_shapes = jax.eval_shape(init_fn, rng, init_data)
else:
assert self.transform_forward
state_shapes = jax.eval_shape(self.init_fn, rng, init_data)
init_state = None
state = xai_checkpoint.restore(
checkpoint_path=self.checkpoint_path,
state_shapes=state_shapes,
mesh=self.mesh,
between_hosts_config=self.between_hosts_config,
state_sharding=self.state_sharding,
init_state=init_state,
params_only=True,
)
del init_state
return state
@dataclass
class Request:
prompt: str
temperature: float
nucleus_p: float
rng_seed: int
max_len: int
@dataclass
class InferenceRunner:
name: str
runner: Any
load: str
tokenizer_path: str = "/tmp/xai_data/tokenizer.model"
local_mesh_config: Tuple[int, int] = (1, 1)
between_hosts_config: Tuple[int, int] = (1, 1)
pad_sizes: tuple[int] = (1024,)
def get_pad_bucket(self, size):
i = bisect.bisect_left(self.pad_sizes, size)
return self.pad_sizes[min(i, len(self.pad_sizes) - 1)]
def initialize(self):
runner = self.runner
self.runner.transform_forward = True
dummy_data = dict(
inputs=np.zeros((1, 256), dtype=np.int32),
targets=np.zeros((1, 256), dtype=np.int32),
)
runner.initialize(
dummy_data,
local_mesh_config=self.local_mesh_config,
between_hosts_config=self.between_hosts_config,
)
self.tokenizer = sentencepiece.SentencePieceProcessor(model_file=self.tokenizer_path)
max_len = runner.model.sequence_len
self.vocab_size = self.runner.model.vocab_size
params = runner.load_or_init(dummy_data)
self.params = params
def pad_to_max_len(x):
if len(x.shape) > 1:
pad_width = max_len - x.shape[1]
return jnp.pad(x, [(0, 0), (0, pad_width), (0, 0), (0, 0)])
else:
return x
@functools.lru_cache
def lm():
return runner.model.make(mesh=runner.mesh)
def hk_forward(
tokens,
memory=None,
length=None,
active=None,
) -> LanguageModelOutput:
if memory is not None:
assert active is not None
layers = []
for l in memory.layers:
# Reset steps to 0 for inactive requests to avoid unnecessary computations.
step = jnp.where(active, l.step, jnp.zeros_like(l.step))
layers.append(l._replace(step=step))
memory = memory._replace(layers=layers)
return lm()(tokens, memory, length=length)
def hk_sample_step(rngs, last_output: SampleOutput, memory, settings):
rngs, rngs_ = jax.vmap(jax.random.split, out_axes=1)(rngs)
lm_outputs = hk_forward(last_output.token_id, memory=memory, active=settings.active)
sample_result = sample_token(rngs_, lm_outputs, settings)
return rngs, sample_result, lm_outputs.model_state
def hk_new_memory(batch_size, sequence_len):
return lm().init_memory(batch_size, sequence_len)
def hk_prefill_memory(
rngs,
memory,
settings,
last_output,
prompt,
length,
rng_seed,
new_settings,
i,
):
rng = jax.random.PRNGKey(seed=rng_seed)
rng, rng_ = jax.random.split(rng)
# Allocate new memory for this sample. The memory length is equal to the length of the
# prompt.
slice = hk_new_memory(1, prompt.shape[0])
# Move the settings for this individual batch entry into the joint settings tensor.
settings = jax.tree_map(
lambda o, v: jax.lax.dynamic_update_index_in_dim(o, v, i, axis=0),
settings,
new_settings,
)
# Get the settings for the batch entry from the joint settings tensor.
settings_slice = jax.tree_map(lambda t: jnp.expand_dims(t[i], axis=0), settings)
# Process the first n-1 tokens of the prompt.
lm_outputs = hk_forward(
jnp.expand_dims(prompt, 0),
memory=slice,
length=jnp.expand_dims(length, 0),
active=settings_slice.active,
)
# The forward pass doesn't correctly set the `step` counter inside the memory. Manually
# override it so `hk_forward` uses the correct context length in the next call.
slice = lm_outputs.model_state
slice = slice._replace(
layers=[l._replace(step=jnp.array([length])) for l in slice.layers]
)
# Sample the actual output token.
rng_ = jnp.expand_dims(rng_, 0)
new_output = sample_token(rng_, lm_outputs, settings_slice)
# Update the KV cache/memory.
slice = jax.tree_map(pad_to_max_len, slice)
memory = insert_slice(memory, slice, length, i)
rng = jnp.expand_dims(rng, 0)
rngs = jax.lax.dynamic_update_index_in_dim(rngs, rng, i, axis=0)
# Move the network outputs for this batch entry into the joint output tensor.
last_output = jax.tree_util.tree_map(
lambda last, new: jax.lax.dynamic_update_index_in_dim(last, new, i, axis=0),
last_output,
new_output,
)
return rngs, last_output, memory, settings
sample_step_ = hk.without_apply_rng(hk.transform(hk_sample_step))
prefill_memory_ = hk.without_apply_rng(hk.transform(hk_prefill_memory))
new_memory_ = hk.without_apply_rng(hk.transform(hk_new_memory))
forward_ = hk.without_apply_rng(hk.transform(hk_forward))
rng = jax.random.PRNGKey(42)
dummy_tokens = jnp.zeros((1, max_len), jnp.int32)
with runner.mesh:
shapes = jax.eval_shape(forward_.init, rng, dummy_tokens)
self.params_sharding = jax.tree_util.tree_map_with_path(
apply_rules(runner.model.partition_rules()),
shapes,
)
ds = P("data")
ms = runner.model.model.get_memory_sharding()
self.sample_step = pjit.pjit(
sample_step_.apply,
in_shardings=(self.params_sharding, None, ds, ms, None),
out_shardings=(None, ds, ms),
donate_argnums=3,
)
self.prefill_memory = pjit.pjit(
functools.partial(prefill_memory_.apply),
in_shardings=(
self.params_sharding,
None,
ms,
None,
ds,
None,
None,
None,
None,
None,
),
out_shardings=(None, ds, ms, None),
donate_argnums=(2,),
)
self.new_memory = pjit.pjit(
new_memory_.apply,
static_argnums=(1, 2),
out_shardings=ms,
)
def run(self):
"""Generator that accepts prompts."""
runner = self.runner
mesh = runner.mesh
max_len = runner.model.sequence_len
batch_size = runner.batch_size
params = self.params
rngs = jax.random.split(jax.random.PRNGKey(1), batch_size)
with mesh:
memory = self.new_memory(params, batch_size, max_len)
settings = SampleSettings(
temperature=np.zeros((batch_size,), dtype=np.float32),
nucleus_p=np.zeros((batch_size,), dtype=np.float32),
mask=np.ones((batch_size, self.vocab_size), dtype=np.int32),
active=np.zeros((batch_size), dtype=np.int32),
)
last_output = SampleOutput(
token_id=np.zeros((batch_size, 1), dtype=np.int32),
prob=np.zeros((batch_size, 1), dtype=jnp.bfloat16),
top_k_token_ids=np.zeros((batch_size, TOP_K), dtype=np.int32),
top_k_probs=np.zeros((batch_size, TOP_K), dtype=jnp.bfloat16),
)
prompt = np.array([300, 400, 500, 600, 600, 700, 800])
new_settings = SampleSettings(
temperature=np.float32(1),
nucleus_p=np.float32(1),
mask=np.ones((self.vocab_size,), dtype=np.int32),
active=np.zeros((), dtype=np.int32),
)
rng_seed = np.uint64(1)
for size in self.pad_sizes:
if size > runner.model.sequence_len:
break
logger.info("Precompile {}".format(size))
prompt_len = len(prompt)
prompt = pad_to_size(prompt, size)
rngs, last_output, memory, settings = self.prefill_memory(
params,
rngs,
memory,
settings,
last_output,
prompt,
prompt_len,
rng_seed,
new_settings,
0,
)
with runner.mesh:
logger.info("Compiling...")
rngs, last_output, memory = self.sample_step(
params, rngs, last_output, memory, settings
)
logger.info("Done compiling.")
all_tokens = []
free_slots = list(range(batch_size))
requests = [None] * batch_size
first_output = [None] * batch_size
jax.tree_map(lambda x: x.copy_to_host_async(), last_output)
prev_token = last_output
step = 0
total_num_tokens = 0
total_num_sequences = 0
with mesh:
while True:
while free_slots:
request: Optional[Request] = yield
tokens = self.tokenizer.encode(request.prompt)
temperature = request.temperature
nucleus_p = request.nucleus_p
rng_seed = request.rng_seed
i = free_slots.pop()
prompt = np.array(tokens, dtype=np.int32)
prompt_len = len(prompt)
prompt = pad_to_size(prompt, self.get_pad_bucket(prompt.shape[0]))
# All tokens are allowed.
mask = np.ones((self.vocab_size,), dtype=np.int32)
new_settings = SampleSettings(
temperature=np.float32(temperature),
nucleus_p=np.float32(nucleus_p),
mask=mask,
active=np.ones((), dtype=np.int32),
)
rng_seed = np.uint64(rng_seed)
rngs, last_output, memory, settings = self.prefill_memory(
params,
rngs,
memory,
settings,
last_output,
prompt,
prompt_len,
rng_seed,
new_settings,
i,
)
jax.tree_map(lambda x: x.copy_to_host_async(), last_output)
first_output[i] = last_output
requests[i] = request
total_num_sequences += 1
rngs, last_output, memory = self.sample_step(
params, rngs, last_output, memory, settings
)
total_num_tokens += batch_size - len(free_slots)
# prev_token should already be on the host.
prev_token = jax.tree_map(np.array, prev_token)
for i in range(batch_size):
if requests[i] is not None:
if first_output[i] is not None:
first_output_i = jax.tree_map(np.array, first_output[i])
all_tokens.append(int(first_output_i.token_id[i][0]))
first_output[i] = None
continue
all_tokens.append(int(prev_token.token_id[i][0]))
cont = len(all_tokens) < requests[i].max_len
if not cont:
output_str = self.tokenizer.decode(all_tokens)
requests[i] = None
free_slots.append(i)
all_tokens = []
settings = settings._replace(active=settings.active.at[i].set(0))
yield output_str
jax.tree_map(lambda x: x.copy_to_host_async(), last_output)
prev_token = last_output
step += 1
def make_mesh(
local_mesh_config: tuple[int, ...], between_hosts_config: tuple[int, ...]
) -> jax.sharding.Mesh:
assert len(local_mesh_config) == 2
assert len(between_hosts_config) == 2
rank_logger.info("Detected %s devices in mesh", jax.device_count())
device_mesh = mesh_utils.create_hybrid_device_mesh(
local_mesh_config,
between_hosts_config,
devices=jax.devices(),
process_is_granule=True,
)
rank_logger.debug(re.sub("\n+", "\n", f"Job device mesh is:\n{device_mesh}"))
return jax.sharding.Mesh(device_mesh, ("data", "model"))
def sample_from_model(server, prompt, max_len, temperature):
next(server)
inp = Request(
prompt=prompt,
temperature=temperature,
nucleus_p=1.0,
rng_seed=42,
max_len=max_len,
)
return server.send(inp)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/mirrors/grok-1.git
git@gitee.com:mirrors/grok-1.git
mirrors
grok-1
grok-1
main

搜索帮助