登录
注册
开源
企业版
高校版
搜索
帮助中心
使用条款
关于我们
开源
企业版
高校版
私有云
Gitee AI
NEW
我知道了
查看详情
登录
注册
代码拉取完成,页面将自动刷新
捐赠
捐赠前请先登录
取消
前往登录
扫描微信二维码支付
取消
支付完成
支付提示
将跳转至支付宝完成支付
确定
取消
Watch
不关注
关注所有动态
仅关注版本发行动态
关注但不提醒动态
11
Star
43
Fork
56
MindSpore
/
golden-stick
代码
Issues
4
Pull Requests
4
Wiki
统计
流水线
服务
Gitee Pages
质量分析
Jenkins for Gitee
腾讯云托管
腾讯云 Serverless
悬镜安全
阿里云 SAE
Codeblitz
我知道了,不再自动展开
标签
标签名
描述
提交信息
操作
v0.6.0
### Major Features and Improvements * The `RoundToNearest` supports Mindformers' KVCache int8 quantization now, i.e. `PagedAttentionMgr` class, mainly for Llama2 networks. * Added Post-Training Quantization algorithm named `PTQ` which supports SmoothQuant, A16W8, KVCacheInt8 and their combinations, such as A16W8 combined with KVCacheInt8, SmoothQuant combined with KVCacheInt8, etc., and the corresponding algorithm capabilities can be obtained by configuring PTQConfig. The algorithm is mainly supports ParallelLlama2 network from the MindFormers community. ### API Change * `PTQConfig` adds the following three parameters: * `act_quant_dtype`: The data type is mindspore.dtype. The default value is None. The options and meanings are as follows: | act_quant_dtype | mindspore.dtype.int8 | None(default) | | ---- | ---- | ---- | | meanings | quantize input to int8 | does not quantize input | * `weight_quant_dtype`: The data type is mindspore.dtype. The default value is mindspore.dtype.int8. The options and meanings are as follows: | weight_quant_dtype | mindspore.dtype.int8(default) | None | | ---- | ---- | ---- | | meanings | quantize weights to int8 | does not quantize weights | * `kvcache_quant_dtype`: The data type is mindspore.dtype. The default value is None. The options and meanings are as follows: | kvcache_quant_dtype | mindspore.dtype.int8 | None(default) | | ---- | ---- | ---- | | meanings | quantize kvcache to int8 | does not quantize kvcache | * `outliers_suppression`: The data type is OutliersSuppressionType. The default value is OutliersSuppressionType.NONE. The options and meanings are as follows: | outliers_suppression | OutliersSuppressionType.SMOOTH | OutliersSuppressionType.NONE(default) | | ---- | ---- | ---- | | meanings | employ smooth approach to suppress outliers in activation and weight | does not suppress outliers | ### Contributors Thanks goes to these wonderful people: ccsszz, yyyyrf, hangangqiang Contributions of any kind are welcome!
92b20ce
2024-10-16 12:08
下载
查看发行版
v0.5.0
## MindSpore Golden Stick 0.5.0 Release Notes ### Major Features and Improvements * [DEMO] Added post-training quantization W8A8 algorithm `SmoothQuant` mainly for Llama2 network. ### API Change * Added `kwargs` to `apply` api of `CompAlgo` class as extensible parameter for subclasses. * Added `NetworkHelper` abstract class as adapter for decoupling between algorithm and framework. * Added `MFLlama2Helper` class as adapter between algorithm and MindFormers. * [DEMO] Added `SmoothQuant` class as entry of SmoothQuant algorithm. * Added parameter checking that `RoundToNearest` algorithm only supports BackendTarget.ASCEND as backend. ### Contributors Thanks goes to these wonderful people: ccsszz, yyyyrf, hangangqiang Contributions of any kind are welcome! ## MindSpore Golden Stick 0.4.1 Release Notes ### Major Features and Improvements * Optimize the time taken by RoundToNearest algorithm to quantify weights. * Optimize the compilation time of RoundToNearest quantization network. ### Contributors Thanks goes to these wonderful people: ccsszz, yyyyrf, hangangqiang Contributions of any kind are welcome!
c1cd03b
2024-08-06 09:19
下载
查看发行版
v0.4.1
## MindSpore Golden Stick 0.4.1 Release Notes ### Major Features and Improvements * Optimize the time taken by `RoundToNearest` algorithm to quantify weights. * Optimize the compilation time of `RoundToNearest` quantization network. ### Contributors Thanks goes to these wonderful people: changshaozhong, yourifan, hangangqiang Contributions of any kind are welcome!
9831ad3
2024-05-28 14:15
下载
v0.4.0
## MindSpore Golden Stick 0.4.0 Release Notes ### Major Features and Improvements * Added post-training weight quantization W8A16 algorithm `RoundToNearest`, which realizes the lossless compression parameters of Llama2 7B/13B/70B and Baichuan2 13B networks by over 40%. ### API Change * Added `PTQConfig` to configure the post-training quantization algorithm. * Added `PTQMode` enumeration class, which can be configured in 'PTQConfig', is used to distinguish between the two phases of the quantization algorithm: the quantization phase and the deployment phase. * Added `BackendTarget` enumeration class, which can be configured in `PTQConfig`, to indicate the backend to which the quantized network will eventually be deployed. For example, 'BackendTarget.Ascend' indicates that it will eventually be deployed to the Ascend backend of MindSpore. ### Contributors Thanks goes to these wonderful people: zhuxiaoxion, hangangqiang Contributions of any kind are welcome!
33f1b64
2024-04-08 14:44
下载
查看发行版
v0.3.0
## MindSpore Golden Stick 0.3.0 Release Notes ### Bug fixes * Fixed the problem that SCOP algorithm training fails to converge. ### Contributors Thanks goes to these wonderful people: hangangqiang, yangruoqi713, kevinkunkun. Contributions of any kind are welcome!
c102485
2023-09-18 14:59
下载
查看发行版
v0.3.0-alpha
fbb66dd
2023-02-10 18:09
下载
查看发行版
v0.2.0
MindSpore Golden Stick 0.2.0 version
b8dfa30
2023-01-18 09:48
下载
查看发行版
v0.1.0
MindSpore Golden Stick 0.1.0 version
f4bf056
2022-07-29 10:27
下载
查看发行版
下载
请输入验证码,防止盗链导致资源被占用
取消
下载
Python
1
https://gitee.com/mindspore/golden-stick.git
git@gitee.com:mindspore/golden-stick.git
mindspore
golden-stick
golden-stick
点此查找更多帮助
搜索帮助
Git 命令在线学习
如何在 Gitee 导入 GitHub 仓库
Git 仓库基础操作
企业版和社区版功能对比
SSH 公钥设置
如何处理代码冲突
仓库体积过大,如何减小?
如何找回被删除的仓库数据
Gitee 产品配额说明
GitHub仓库快速导入Gitee及同步更新
什么是 Release(发行版)
将 PHP 项目自动发布到 packagist.org
评论
仓库举报
回到顶部
登录提示
该操作需登录 Gitee 帐号,请先登录后再操作。
立即登录
没有帐号,去注册