1 Star 0 Fork 47

mikejohnson/Gradio-YOLOv5-Det

forked from CV_Lab/Gradio-YOLOv5-Det 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
gradio_yolov5_det_v3_2.py 14.87 KB
一键复制 编辑 原始数据 按行查看 历史
代码阿尔法 提交于 2022-06-01 07:42 . v04_2 update
# Gradio YOLOv5 Det v0.3.2
# 创建人:曾逸夫
# 创建时间:2022-05-13
import os
# os.system("pip install gradio==3.0.6b3")
os.system("pip install gradio==3.0.5")
import argparse
import csv
import json
import sys
from collections import Counter
from pathlib import Path
import gradio as gr
import numpy as np
import pandas as pd
import torch
import yaml
from PIL import Image, ImageDraw, ImageFont
from util.fonts_opt import is_fonts
from util.pdf_opt import pdf_generate
ROOT_PATH = sys.path[0] # 根目录
# yolov5路径
yolov5_path = "ultralytics/yolov5"
# 本地模型路径
local_model_path = f"{ROOT_PATH}/models"
# Gradio YOLOv5 Det版本
GYD_VERSION = "Gradio YOLOv5 Det v0.3.2"
# 模型名称临时变量
model_name_tmp = ""
# 设备临时变量
device_tmp = ""
# 文件后缀
suffix_list = [".csv", ".yaml"]
# 字体大小
FONTSIZE = 25
# 目标尺寸
obj_style = ["小目标", "中目标", "大目标"]
def parse_args(known=False):
parser = argparse.ArgumentParser(description="Gradio YOLOv5 Det v0.3.2")
parser.add_argument("--source", "-src", default="upload", type=str, help="input source")
parser.add_argument("--img_tool", "-it", default="editor", type=str, help="input image tool")
parser.add_argument("--model_name", "-mn", default="yolov5s", type=str, help="model name")
parser.add_argument(
"--model_cfg",
"-mc",
default="./model_config/model_name_p5_p6_all.yaml",
type=str,
help="model config",
)
parser.add_argument(
"--cls_name",
"-cls",
default="./cls_name/cls_name_zh.yaml",
type=str,
help="cls name",
)
parser.add_argument(
"--nms_conf",
"-conf",
default=0.5,
type=float,
help="model NMS confidence threshold",
)
parser.add_argument("--nms_iou", "-iou", default=0.45, type=float, help="model NMS IoU threshold")
parser.add_argument(
"--device",
"-dev",
default="cuda:0",
type=str,
help="cuda or cpu",
)
parser.add_argument("--inference_size", "-isz", default=640, type=int, help="model inference size")
parser.add_argument("--max_detnum", "-mdn", default=50, type=float, help="model max det num")
parser.add_argument("--slider_step", "-ss", default=0.05, type=float, help="slider step")
parser.add_argument(
"--is_login",
"-isl",
action="store_true",
default=False,
help="is login",
)
parser.add_argument('--usr_pwd',
"-up",
nargs='+',
type=str,
default=["admin", "admin"],
help="user & password for login")
parser.add_argument(
"--is_share",
"-is",
action="store_true",
default=False,
help="is login",
)
args = parser.parse_known_args()[0] if known else parser.parse_args()
return args
# yaml文件解析
def yaml_parse(file_path):
return yaml.safe_load(open(file_path, encoding="utf-8").read())
# yaml csv 文件解析
def yaml_csv(file_path, file_tag):
file_suffix = Path(file_path).suffix
if file_suffix == suffix_list[0]:
# 模型名称
file_names = [i[0] for i in list(csv.reader(open(file_path)))] # csv版
elif file_suffix == suffix_list[1]:
# 模型名称
file_names = yaml_parse(file_path).get(file_tag) # yaml版
else:
print(f"{file_path}格式不正确!程序退出!")
sys.exit()
return file_names
# 模型加载
def model_loading(model_name, device):
# 加载本地模型
torch.hub._validate_not_a_forked_repo = lambda a, b, c: True
model = torch.hub.load(
yolov5_path,
"custom",
path=f"{local_model_path}/{model_name}",
device=device,
force_reload=False,
_verbose=True,
)
return model
# 检测信息
def export_json(results, img_size):
return [[{
"ID": i,
"CLASS": int(result[i][5]),
"CLASS_NAME": model_cls_name_cp[int(result[i][5])],
"BOUNDING_BOX": {
"XMIN": round(result[i][:4].tolist()[0], 6),
"YMIN": round(result[i][:4].tolist()[1], 6),
"XMAX": round(result[i][:4].tolist()[2], 6),
"YMAX": round(result[i][:4].tolist()[3], 6),},
"CONF": round(float(result[i][4]), 2),
"FPS": round(1000 / float(results.t[1]), 2),
"IMG_WIDTH": img_size[0],
"IMG_HEIGHT": img_size[1],} for i in range(len(result))] for result in results.xyxyn]
# 帧转换
def pil_draw(img, countdown_msg, textFont, xyxy, font_size, opt, obj_cls_index, color_list):
img_pil = ImageDraw.Draw(img)
img_pil.rectangle(xyxy, fill=None, outline=color_list[obj_cls_index]) # 边界框
if "label" in opt:
text_w, text_h = textFont.getsize(countdown_msg) # 标签尺寸
img_pil.rectangle(
(xyxy[0], xyxy[1], xyxy[0] + text_w, xyxy[1] + text_h),
fill=color_list[obj_cls_index],
outline=color_list[obj_cls_index],
) # 标签背景
img_pil.multiline_text(
(xyxy[0], xyxy[1]),
countdown_msg,
fill=(255, 255, 255),
font=textFont,
align="center",
)
return img
def color_set(cls_num):
color_list = []
for i in range(cls_num):
color = tuple(np.random.choice(range(256), size=3))
# color = ["#"+''.join([random.choice('0123456789ABCDEF') for j in range(6)])]
color_list.append(color)
return color_list
# YOLOv5图片检测函数
def yolo_det(img, device, model_name, infer_size, conf, iou, max_num, model_cls, opt):
global model, model_name_tmp, device_tmp
# 目标尺寸个数
s_obj, m_obj, l_obj = 0, 0, 0
# 目标面积
area_obj_all = []
# 类别数量统计
cls_det_stat = []
if model_name_tmp != model_name:
# 模型判断,避免反复加载
model_name_tmp = model_name
model = model_loading(model_name_tmp, device)
elif device_tmp != device:
device_tmp = device
model = model_loading(model_name_tmp, device)
# -----------模型调参-----------
model.conf = conf # NMS 置信度阈值
model.iou = iou # NMS IoU阈值
model.max_det = int(max_num) # 最大检测框数
model.classes = model_cls # 模型类别
color_list = color_set(len(model_cls_name_cp)) # 设置颜色
img_size = img.size # 帧尺寸
results = model(img, size=infer_size) # 检测
# 数据表
dataframe = results.pandas().xyxy[0].round(2)
# ----------------加载字体----------------
yaml_index = cls_name.index(".yaml")
cls_name_lang = cls_name[yaml_index - 2:yaml_index]
if cls_name_lang == "zh":
# 中文
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/SimSun.ttf"), size=FONTSIZE)
elif cls_name_lang in ["en", "ru", "es", "ar"]:
# 英文、俄语、西班牙语、阿拉伯语
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/TimesNewRoman.ttf"), size=FONTSIZE)
elif cls_name_lang == "ko":
# 韩语
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/malgun.ttf"), size=FONTSIZE)
for result in results.xyxyn:
for i in range(len(result)):
id = int(i) # 实例ID
obj_cls_index = int(result[i][5]) # 类别索引
obj_cls = model_cls_name_cp[obj_cls_index] # 类别
cls_det_stat.append(obj_cls)
# ------------边框坐标------------
x0 = float(result[i][:4].tolist()[0])
y0 = float(result[i][:4].tolist()[1])
x1 = float(result[i][:4].tolist()[2])
y1 = float(result[i][:4].tolist()[3])
# ------------边框实际坐标------------
x0 = int(img_size[0] * x0)
y0 = int(img_size[1] * y0)
x1 = int(img_size[0] * x1)
y1 = int(img_size[1] * y1)
conf = float(result[i][4]) # 置信度
# fps = f"{(1000 / float(results.t[1])):.2f}" # FPS
det_img = pil_draw(
img,
f"{id}-{obj_cls} {conf:.2f}",
textFont,
[x0, y0, x1, y1],
FONTSIZE,
opt,
obj_cls_index,
color_list,
)
# ----------加入目标尺寸----------
w_obj = x1 - x0
h_obj = y1 - y0
area_obj = w_obj * h_obj
area_obj_all.append(area_obj)
# ------------JSON生成------------
det_json = export_json(results, img.size)[0] # 检测信息
det_json_format = json.dumps(det_json, sort_keys=False, indent=4, separators=(",", ":"),
ensure_ascii=False) # JSON格式化
if "json" not in opt:
det_json = None
# --------------PDF生成--------------
report = "./Det_Report.pdf"
if "pdf" in opt:
pdf_generate(f"{det_json_format}", report, GYD_VERSION)
else:
report = None
# --------------目标尺寸计算--------------
for i in range(len(area_obj_all)):
if (0 < area_obj_all[i] <= 32 ** 2):
s_obj = s_obj + 1
elif (32 ** 2 < area_obj_all[i] <= 96 ** 2):
m_obj = m_obj + 1
elif (area_obj_all[i] > 96 ** 2):
l_obj = l_obj + 1
sml_obj_total = s_obj + m_obj + l_obj
objSize_dict = {obj_style[i]: [s_obj, m_obj, l_obj][i] / sml_obj_total for i in range(3)}
# ------------类别统计------------
clsRatio_dict = {}
clsDet_dict = Counter(cls_det_stat)
clsDet_dict_sum = sum(clsDet_dict.values())
for k, v in clsDet_dict.items():
clsRatio_dict[k] = v / clsDet_dict_sum
return det_img, objSize_dict, clsRatio_dict, det_json, report, dataframe
def main(args):
gr.close_all()
global model, model_cls_name_cp, cls_name
source = args.source
img_tool = args.img_tool
nms_conf = args.nms_conf
nms_iou = args.nms_iou
model_name = args.model_name
model_cfg = args.model_cfg
cls_name = args.cls_name
device = args.device
inference_size = args.inference_size
max_detnum = args.max_detnum
slider_step = args.slider_step
is_login = args.is_login
usr_pwd = args.usr_pwd
is_share = args.is_share
is_fonts(f"{ROOT_PATH}/fonts") # 检查字体文件
# 模型加载
model = model_loading(model_name, device)
model_names = yaml_csv(model_cfg, "model_names") # 模型名称
model_cls_name = yaml_csv(cls_name, "model_cls_name") # 类别名称
model_cls_name_cp = model_cls_name.copy() # 类别名称
# -------------------输入组件-------------------
inputs_img = gr.Image(image_mode="RGB", source=source, tool=img_tool, type="pil", label="原始图片")
inputs_device = gr.Radio(choices=["cuda:0", "cpu"], value=device, label="设备")
inputs_model = gr.Dropdown(choices=model_names, value=model_name, type="value", label="模型")
inputs_size = gr.Radio(choices=[320, 640, 1280], value=inference_size, label="推理尺寸")
input_conf = gr.Slider(0, 1, step=slider_step, value=nms_conf, label="置信度阈值")
inputs_iou = gr.Slider(0, 1, step=slider_step, value=nms_iou, label="IoU 阈值")
inputs_maxnum = gr.Number(value=max_detnum, label="最大检测数")
inputs_clsName = gr.CheckboxGroup(choices=model_cls_name, value=model_cls_name, type="index", label="类别")
inputs_opt = gr.CheckboxGroup(choices=["label", "pdf", "json"], value=["label", "pdf"], type="value", label="操作")
# 输入参数
inputs = [
inputs_img, # 输入图片
inputs_device, # 设备
inputs_model, # 模型
inputs_size, # 推理尺寸
input_conf, # 置信度阈值
inputs_iou, # IoU阈值
inputs_maxnum, # 最大检测数
inputs_clsName, # 类别
inputs_opt, # 检测操作
]
# 输出参数
outputs_img = gr.Image(type="pil", label="检测图片")
outputs_json = gr.JSON(label="检测信息")
outputs_pdf = gr.File(label="下载检测报告")
outputs_df = gr.Dataframe(max_rows=5, overflow_row_behaviour="paginate", type="pandas", label="检测信息列表")
outputs_objSize = gr.Label(label="目标尺寸占比统计")
outputs_clsSize = gr.Label(label="类别检测占比统计")
outputs = [outputs_img, outputs_objSize, outputs_clsSize, outputs_json, outputs_pdf, outputs_df]
# 标题
title = "Gradio YOLOv5 Det v0.3.2"
# 描述
description = "<div align='center'>可自定义目标检测模型、安装简单、使用方便</div>"
# article="https://gitee.com/CV_Lab/gradio_yolov5_det"
# 示例图片
examples = [
[
"./img_examples/bus.jpg",
"cpu",
"yolov5s",
640,
0.6,
0.5,
10,
["人", "公交车"],
["label", "pdf"],],
[
"./img_examples/giraffe.jpg",
"cuda:0",
"yolov5l",
320,
0.5,
0.45,
12,
["长颈鹿"],
["label", "pdf"],],
[
"./img_examples/zidane.jpg",
"cuda:0",
"yolov5m",
640,
0.25,
0.5,
15,
["人", "领带"],
["pdf", "json"],],
[
"./img_examples/Millenial-at-work.jpg",
"cuda:0",
"yolov5s6",
1280,
0.5,
0.5,
20,
["人", "椅子", "杯子", "笔记本电脑"],
["label", "pdf"],],]
# 接口
gyd = gr.Interface(
fn=yolo_det,
inputs=inputs,
outputs=outputs,
title=title,
description=description,
# article=article,
examples=examples,
# theme="seafoam",
# live=True, # 实时变更输出
flagging_dir="run", # 输出目录
# allow_flagging="manual",
# flagging_options=["good", "generally", "bad"],
)
if not is_login:
gyd.launch(
inbrowser=True, # 自动打开默认浏览器
show_tips=True, # 自动显示gradio最新功能
share=is_share, # 项目共享,其他设备可以访问
favicon_path="./icon/logo.ico", # 网页图标
show_error=True, # 在浏览器控制台中显示错误信息
quiet=True, # 禁止大多数打印语句
)
else:
gyd.launch(
inbrowser=True, # 自动打开默认浏览器
show_tips=True, # 自动显示gradio最新功能
auth=usr_pwd, # 登录界面
share=is_share, # 项目共享,其他设备可以访问
favicon_path="./icon/logo.ico", # 网页图标
show_error=True, # 在浏览器控制台中显示错误信息
quiet=True, # 禁止大多数打印语句
)
if __name__ == "__main__":
args = parse_args()
main(args)
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/mikejohnson/gradio_yolov5_det.git
git@gitee.com:mikejohnson/gradio_yolov5_det.git
mikejohnson
gradio_yolov5_det
Gradio-YOLOv5-Det
master

搜索帮助