1 Star 1 Fork 0

micropiggy/raspberryPiOCR

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
ocr_db_crnn.cc 23.95 KB
一键复制 编辑 原始数据 按行查看 历史
micropiggy 提交于 2023-06-26 22:01 . add server
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781
#include <chrono>
#include "paddle_api.h" // NOLINT
#include "paddle_place.h"
#include "opencv2/opencv.hpp"
#include "cls_process.h"
#include "crnn_process.h"
#include "db_post_process.h"
#include "AutoLog/auto_log/lite_autolog.h"
#include <iostream>
#include <vector>
#include <cstring>
#include <sys/socket.h>
#include <arpa/inet.h>
#define PORT 9000
using namespace paddle::lite_api; // NOLINT
using namespace std;
// fill tensor with mean and scale and trans layout: nhwc -> nchw, neon speed up
void NeonMeanScale(const float *din, float *dout, int size,
const std::vector<float> mean,
const std::vector<float> scale)
{
if (mean.size() != 3 || scale.size() != 3)
{
std::cerr << "[ERROR] mean or scale size must equal to 3" << std::endl;
exit(1);
}
float32x4_t vmean0 = vdupq_n_f32(mean[0]);
float32x4_t vmean1 = vdupq_n_f32(mean[1]);
float32x4_t vmean2 = vdupq_n_f32(mean[2]);
float32x4_t vscale0 = vdupq_n_f32(scale[0]);
float32x4_t vscale1 = vdupq_n_f32(scale[1]);
float32x4_t vscale2 = vdupq_n_f32(scale[2]);
float *dout_c0 = dout;
float *dout_c1 = dout + size;
float *dout_c2 = dout + size * 2;
int i = 0;
for (; i < size - 3; i += 4)
{
float32x4x3_t vin3 = vld3q_f32(din);
float32x4_t vsub0 = vsubq_f32(vin3.val[0], vmean0);
float32x4_t vsub1 = vsubq_f32(vin3.val[1], vmean1);
float32x4_t vsub2 = vsubq_f32(vin3.val[2], vmean2);
float32x4_t vs0 = vmulq_f32(vsub0, vscale0);
float32x4_t vs1 = vmulq_f32(vsub1, vscale1);
float32x4_t vs2 = vmulq_f32(vsub2, vscale2);
vst1q_f32(dout_c0, vs0);
vst1q_f32(dout_c1, vs1);
vst1q_f32(dout_c2, vs2);
din += 12;
dout_c0 += 4;
dout_c1 += 4;
dout_c2 += 4;
}
for (; i < size; i++)
{
*(dout_c0++) = (*(din++) - mean[0]) * scale[0];
*(dout_c1++) = (*(din++) - mean[1]) * scale[1];
*(dout_c2++) = (*(din++) - mean[2]) * scale[2];
}
}
// resize image to a size multiple of 32 which is required by the network
cv::Mat DetResizeImg(const cv::Mat img, int max_size_len,
std::vector<float> &ratio_hw)
{
int w = img.cols;
int h = img.rows;
float ratio = 1.f;
int max_wh = w >= h ? w : h;
if (max_wh > max_size_len)
{
if (h > w)
{
ratio = static_cast<float>(max_size_len) / static_cast<float>(h);
}
else
{
ratio = static_cast<float>(max_size_len) / static_cast<float>(w);
}
}
int resize_h = static_cast<int>(float(h) * ratio);
int resize_w = static_cast<int>(float(w) * ratio);
if (resize_h % 32 == 0)
resize_h = resize_h;
else if (resize_h / 32 < 1 + 1e-5)
resize_h = 32;
else
resize_h = (resize_h / 32 - 1) * 32;
if (resize_w % 32 == 0)
resize_w = resize_w;
else if (resize_w / 32 < 1 + 1e-5)
resize_w = 32;
else
resize_w = (resize_w / 32 - 1) * 32;
cv::Mat resize_img;
cv::resize(img, resize_img, cv::Size(resize_w, resize_h));
ratio_hw.push_back(static_cast<float>(resize_h) / static_cast<float>(h));
ratio_hw.push_back(static_cast<float>(resize_w) / static_cast<float>(w));
return resize_img;
}
cv::Mat RunClsModel(cv::Mat img, std::shared_ptr<PaddlePredictor> predictor_cls,
const float thresh = 0.9)
{
std::vector<float> mean = {0.5f, 0.5f, 0.5f};
std::vector<float> scale = {1 / 0.5f, 1 / 0.5f, 1 / 0.5f};
cv::Mat srcimg;
img.copyTo(srcimg);
cv::Mat crop_img;
img.copyTo(crop_img);
cv::Mat resize_img;
int index = 0;
float wh_ratio =
static_cast<float>(crop_img.cols) / static_cast<float>(crop_img.rows);
resize_img = ClsResizeImg(crop_img);
resize_img.convertTo(resize_img, CV_32FC3, 1 / 255.f);
const float *dimg = reinterpret_cast<const float *>(resize_img.data);
std::unique_ptr<Tensor> input_tensor0(std::move(predictor_cls->GetInput(0)));
input_tensor0->Resize({1, 3, resize_img.rows, resize_img.cols});
auto *data0 = input_tensor0->mutable_data<float>();
NeonMeanScale(dimg, data0, resize_img.rows * resize_img.cols, mean, scale);
// Run CLS predictor
predictor_cls->Run();
// Get output and run postprocess
std::unique_ptr<const Tensor> softmax_out(
std::move(predictor_cls->GetOutput(0)));
auto *softmax_scores = softmax_out->mutable_data<float>();
auto softmax_out_shape = softmax_out->shape();
float score = 0;
int label = 0;
for (int i = 0; i < softmax_out_shape[1]; i++)
{
if (softmax_scores[i] > score)
{
score = softmax_scores[i];
label = i;
}
}
if (label % 2 == 1 && score > thresh)
{
cv::rotate(srcimg, srcimg, 1);
}
return srcimg;
}
void RunRecModel(std::vector<std::vector<std::vector<int>>> boxes, cv::Mat img,
std::shared_ptr<PaddlePredictor> predictor_crnn,
std::vector<std::string> &rec_text,
std::vector<float> &rec_text_score,
std::vector<std::string> charactor_dict,
std::shared_ptr<PaddlePredictor> predictor_cls,
int use_direction_classify,
std::vector<double> *times,
int rec_image_height)
{
std::vector<float> mean = {0.5f, 0.5f, 0.5f};
std::vector<float> scale = {1 / 0.5f, 1 / 0.5f, 1 / 0.5f};
cv::Mat srcimg;
img.copyTo(srcimg);
cv::Mat crop_img;
cv::Mat resize_img;
int index = 0;
std::vector<double> time_info = {0, 0, 0};
for (int i = boxes.size() - 1; i >= 0; i--)
{
auto preprocess_start = std::chrono::steady_clock::now();
crop_img = GetRotateCropImage(srcimg, boxes[i]);
if (use_direction_classify >= 1)
{
crop_img = RunClsModel(crop_img, predictor_cls);
}
float wh_ratio =
static_cast<float>(crop_img.cols) / static_cast<float>(crop_img.rows);
resize_img = CrnnResizeImg(crop_img, wh_ratio, rec_image_height);
resize_img.convertTo(resize_img, CV_32FC3, 1 / 255.f);
const float *dimg = reinterpret_cast<const float *>(resize_img.data);
std::unique_ptr<Tensor> input_tensor0(
std::move(predictor_crnn->GetInput(0)));
input_tensor0->Resize({1, 3, resize_img.rows, resize_img.cols});
auto *data0 = input_tensor0->mutable_data<float>();
NeonMeanScale(dimg, data0, resize_img.rows * resize_img.cols, mean, scale);
auto preprocess_end = std::chrono::steady_clock::now();
//// Run CRNN predictor
auto inference_start = std::chrono::steady_clock::now();
predictor_crnn->Run();
// Get output and run postprocess
std::unique_ptr<const Tensor> output_tensor0(
std::move(predictor_crnn->GetOutput(0)));
auto *predict_batch = output_tensor0->data<float>();
auto predict_shape = output_tensor0->shape();
auto inference_end = std::chrono::steady_clock::now();
// ctc decode
auto postprocess_start = std::chrono::steady_clock::now();
std::string str_res;
int argmax_idx;
int last_index = 0;
float score = 0.f;
int count = 0;
float max_value = 0.0f;
for (int n = 0; n < predict_shape[1]; n++)
{
argmax_idx = int(Argmax(&predict_batch[n * predict_shape[2]],
&predict_batch[(n + 1) * predict_shape[2]]));
max_value =
float(*std::max_element(&predict_batch[n * predict_shape[2]],
&predict_batch[(n + 1) * predict_shape[2]]));
if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index)))
{
score += max_value;
count += 1;
str_res += charactor_dict[argmax_idx];
}
last_index = argmax_idx;
}
score /= count;
rec_text.push_back(str_res);
rec_text_score.push_back(score);
auto postprocess_end = std::chrono::steady_clock::now();
std::chrono::duration<float> preprocess_diff = preprocess_end - preprocess_start;
time_info[0] += double(preprocess_diff.count() * 1000);
std::chrono::duration<float> inference_diff = inference_end - inference_start;
time_info[1] += double(inference_diff.count() * 1000);
std::chrono::duration<float> postprocess_diff = postprocess_end - postprocess_start;
time_info[2] += double(postprocess_diff.count() * 1000);
}
times->push_back(time_info[0]);
times->push_back(time_info[1]);
times->push_back(time_info[2]);
}
std::vector<std::vector<std::vector<int>>>
RunDetModel(std::shared_ptr<PaddlePredictor> predictor, cv::Mat img,
std::map<std::string, double> Config, std::vector<double> *times)
{
// Read img
int max_side_len = int(Config["max_side_len"]);
int det_db_use_dilate = int(Config["det_db_use_dilate"]);
cv::Mat srcimg;
img.copyTo(srcimg);
auto preprocess_start = std::chrono::steady_clock::now();
std::vector<float> ratio_hw;
img = DetResizeImg(img, max_side_len, ratio_hw);
cv::Mat img_fp;
img.convertTo(img_fp, CV_32FC3, 1.0 / 255.f);
// Prepare input data from image
std::unique_ptr<Tensor> input_tensor0(std::move(predictor->GetInput(0)));
input_tensor0->Resize({1, 3, img_fp.rows, img_fp.cols});
auto *data0 = input_tensor0->mutable_data<float>();
std::vector<float> mean = {0.485f, 0.456f, 0.406f};
std::vector<float> scale = {1 / 0.229f, 1 / 0.224f, 1 / 0.225f};
const float *dimg = reinterpret_cast<const float *>(img_fp.data);
NeonMeanScale(dimg, data0, img_fp.rows * img_fp.cols, mean, scale);
auto preprocess_end = std::chrono::steady_clock::now();
// Run predictor
auto inference_start = std::chrono::steady_clock::now();
predictor->Run();
// Get output and post process
std::unique_ptr<const Tensor> output_tensor(
std::move(predictor->GetOutput(0)));
auto *outptr = output_tensor->data<float>();
auto shape_out = output_tensor->shape();
auto inference_end = std::chrono::steady_clock::now();
// Save output
auto postprocess_start = std::chrono::steady_clock::now();
float pred[shape_out[2] * shape_out[3]];
unsigned char cbuf[shape_out[2] * shape_out[3]];
for (int i = 0; i < int(shape_out[2] * shape_out[3]); i++)
{
pred[i] = static_cast<float>(outptr[i]);
cbuf[i] = static_cast<unsigned char>((outptr[i]) * 255);
}
cv::Mat cbuf_map(shape_out[2], shape_out[3], CV_8UC1,
reinterpret_cast<unsigned char *>(cbuf));
cv::Mat pred_map(shape_out[2], shape_out[3], CV_32F,
reinterpret_cast<float *>(pred));
const double threshold = double(Config["det_db_thresh"]) * 255;
const double max_value = 255;
cv::Mat bit_map;
cv::threshold(cbuf_map, bit_map, threshold, max_value, cv::THRESH_BINARY);
if (det_db_use_dilate == 1)
{
cv::Mat dilation_map;
cv::Mat dila_ele =
cv::getStructuringElement(cv::MORPH_RECT, cv::Size(2, 2));
cv::dilate(bit_map, dilation_map, dila_ele);
bit_map = dilation_map;
}
auto boxes = BoxesFromBitmap(pred_map, bit_map, Config);
std::vector<std::vector<std::vector<int>>> filter_boxes =
FilterTagDetRes(boxes, ratio_hw[0], ratio_hw[1], srcimg);
auto postprocess_end = std::chrono::steady_clock::now();
std::chrono::duration<float> preprocess_diff = preprocess_end - preprocess_start;
times->push_back(double(preprocess_diff.count() * 1000));
std::chrono::duration<float> inference_diff = inference_end - inference_start;
times->push_back(double(inference_diff.count() * 1000));
std::chrono::duration<float> postprocess_diff = postprocess_end - postprocess_start;
times->push_back(double(postprocess_diff.count() * 1000));
return filter_boxes;
}
std::shared_ptr<PaddlePredictor> loadModel(std::string model_file, int num_threads)
{
MobileConfig config;
config.set_model_from_file(model_file);
config.set_threads(num_threads);
std::shared_ptr<PaddlePredictor> predictor =
CreatePaddlePredictor<MobileConfig>(config);
return predictor;
}
cv::Mat Visualization(cv::Mat srcimg,
std::vector<std::vector<std::vector<int>>> boxes)
{
cv::Point rook_points[boxes.size()][4];
for (int n = 0; n < boxes.size(); n++)
{
for (int m = 0; m < boxes[0].size(); m++)
{
rook_points[n][m] = cv::Point(static_cast<int>(boxes[n][m][0]),
static_cast<int>(boxes[n][m][1]));
}
}
cv::Mat img_vis;
srcimg.copyTo(img_vis);
for (int n = 0; n < boxes.size(); n++)
{
const cv::Point *ppt[1] = {rook_points[n]};
int npt[] = {4};
cv::polylines(img_vis, ppt, npt, 1, 1, CV_RGB(0, 255, 0), 2, 8, 0);
}
cv::imwrite("./vis.jpg", img_vis);
std::cout << "The detection visualized image saved in ./vis.jpg" << std::endl;
return img_vis;
}
std::vector<std::string> split(const std::string &str,
const std::string &delim)
{
std::vector<std::string> res;
if ("" == str)
return res;
char *strs = new char[str.length() + 1];
std::strcpy(strs, str.c_str());
char *d = new char[delim.length() + 1];
std::strcpy(d, delim.c_str());
char *p = std::strtok(strs, d);
while (p)
{
string s = p;
res.push_back(s);
p = std::strtok(NULL, d);
}
return res;
}
std::map<std::string, double> LoadConfigTxt(std::string config_path)
{
auto config = ReadDict(config_path);
std::map<std::string, double> dict;
for (int i = 0; i < config.size(); i++)
{
std::vector<std::string> res = split(config[i], " ");
dict[res[0]] = stod(res[1]);
}
return dict;
}
void check_params(int argc, char **argv)
{
if (argc <= 1 || (strcmp(argv[1], "det") != 0 && strcmp(argv[1], "rec") != 0 && strcmp(argv[1], "system") != 0))
{
std::cerr << "Please choose one mode of [det, rec, system] !" << std::endl;
exit(1);
}
if (strcmp(argv[1], "det") == 0)
{
if (argc < 9)
{
std::cerr << "[ERROR] usage:" << argv[0]
<< " det det_model runtime_device num_threads batchsize img_dir det_config lite_benchmark_value" << std::endl;
exit(1);
}
}
if (strcmp(argv[1], "rec") == 0)
{
if (argc < 9)
{
std::cerr << "[ERROR] usage:" << argv[0]
<< " rec rec_model runtime_device num_threads batchsize img_dir key_txt lite_benchmark_value" << std::endl;
exit(1);
}
}
if (strcmp(argv[1], "system") == 0)
{
if (argc < 12)
{
std::cerr << "[ERROR] usage:" << argv[0]
<< " system det_model rec_model clas_model runtime_device num_threads batchsize img_dir det_config key_txt lite_benchmark_value" << std::endl;
exit(1);
}
}
}
void load_model_det()
{
}
vector<string> system(shared_ptr<PaddlePredictor> det, shared_ptr<PaddlePredictor> rec)
{
// std::string det_model_file = "ch_PP-OCRv3_det_infer.nb";
// std::string rec_model_file = "ch_PP-OCRv3_rec_infer.nb";
// std::string cls_model_file = argv[4];
// std::string runtime_device = "arm8";
// std::string precision = "INT8";
// std::string num_threads = "10";
// std::string batchsize = "1";
// std::string img_dir = "11.jpg";
std::string det_config_path = "config.txt";
std::string dict_path = "ppocr_keys_v1.txt";
// if (strcmp(argv[6], "FP32") != 0 && strcmp(argv[6], "INT8") != 0) {
// std::cerr << "Only support FP32 or INT8." << std::endl;
// exit(1);
// }
// std::vector<cv::String> cv_all_img_names;
// cv::glob(img_dir, cv_all_img_names);
//// load config from txt file
auto Config = LoadConfigTxt(det_config_path);
int use_direction_classify = int(Config["use_direction_classify"]);
int rec_image_height = int(Config["rec_image_height"]);
auto charactor_dict = ReadDict(dict_path);
charactor_dict.insert(charactor_dict.begin(), "#"); // blank char for ctc
charactor_dict.push_back(" ");
// auto det_predictor = loadModel(det_model_file, std::stoi(num_threads));
// auto rec_predictor = loadModel(rec_model_file, std::stoi(num_threads));
std::shared_ptr<PaddlePredictor> cls_predictor;
// auto cls_predictor = loadModel(cls_model_file, std::stoi(num_threads));
std::vector<double> det_time_info = {0, 0, 0};
std::vector<double> rec_time_info = {0, 0, 0};
// for (int i = 0; i < cv_all_img_names.size(); ++i) {
// std::cout << "The predict img: " << cv_all_img_names[i] << std::endl;
cv::VideoCapture cap(0);
if (!cap.isOpened())
std::cout << "Camera not opened" << std::endl;
cv::Mat srcimg;
cap >> srcimg;
// cv::Mat srcimg = cv::imread("11.jpg");
// if (!srcimg.data) {
// std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << std::endl;
// exit(1);
// }
std::vector<double> det_times;
auto boxes = RunDetModel(det, srcimg, Config, &det_times);
std::vector<std::string> rec_text;
std::vector<float> rec_text_score;
std::vector<double> rec_times;
// RunRecModel(boxes, srcimg, rec_predictor, rec_text, rec_text_score,
// charactor_dict, cls_predictor, use_direction_classify, &rec_times, rec_image_height);
RunRecModel(boxes, srcimg, rec, rec_text, rec_text_score,
charactor_dict, cls_predictor, 0, &rec_times, rec_image_height);
//// visualization
auto img_vis = Visualization(srcimg, boxes);
//// print recognized text
for (int i = 0; i < rec_text.size(); i++)
{
// std::cout << i << "\t" << rec_text[i] << "\t" << rec_text_score[i]
// << std::endl;
std::cout << rec_text[i] << std::endl;
// }
// det_time_info[0] += det_times[0];
// det_time_info[1] += det_times[1];
// det_time_info[2] += det_times[2];
// rec_time_info[0] += rec_times[0];
// rec_time_info[1] += rec_times[1];
// rec_time_info[2] += rec_times[2];
}
return rec_text;
// if (strcmp(argv[12], "True") == 0) {
// AutoLogger autolog_det(det_model_file,
// runtime_device,
// std::stoi(num_threads),
// std::stoi(batchsize),
// "dynamic",
// precision,
// det_time_info,
// cv_all_img_names.size());
// AutoLogger autolog_rec(rec_model_file,
// runtime_device,
// std::stoi(num_threads),
// std::stoi(batchsize),
// "dynamic",
// precision,
// rec_time_info,
// cv_all_img_names.size());
// autolog_det.report();
// std::cout << std::endl;
// autolog_rec.report();
// }
}
void det(int argc, char **argv)
{
std::string det_model_file = argv[2];
std::string runtime_device = argv[3];
std::string precision = argv[4];
std::string num_threads = argv[5];
std::string batchsize = argv[6];
std::string img_dir = argv[7];
std::string det_config_path = argv[8];
if (strcmp(argv[4], "FP32") != 0 && strcmp(argv[4], "INT8") != 0)
{
std::cerr << "Only support FP32 or INT8." << std::endl;
exit(1);
}
std::vector<cv::String> cv_all_img_names;
cv::glob(img_dir, cv_all_img_names);
//// load config from txt file
auto Config = LoadConfigTxt(det_config_path);
auto det_predictor = loadModel(det_model_file, std::stoi(num_threads));
std::vector<double> time_info = {0, 0, 0};
for (int i = 0; i < cv_all_img_names.size(); ++i)
{
std::cout << "The predict img: " << cv_all_img_names[i] << std::endl;
cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
if (!srcimg.data)
{
std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << std::endl;
exit(1);
}
std::vector<double> times;
auto boxes = RunDetModel(det_predictor, srcimg, Config, &times);
//// visualization
auto img_vis = Visualization(srcimg, boxes);
std::cout << boxes.size() << " bboxes have detected:" << std::endl;
for (int i = 0; i < boxes.size(); i++)
{
std::cout << "The " << i << " box:" << std::endl;
for (int j = 0; j < 4; j++)
{
for (int k = 0; k < 2; k++)
{
std::cout << boxes[i][j][k] << "\t";
}
}
std::cout << std::endl;
}
time_info[0] += times[0];
time_info[1] += times[1];
time_info[2] += times[2];
}
if (strcmp(argv[9], "True") == 0)
{
AutoLogger autolog(det_model_file,
runtime_device,
std::stoi(num_threads),
std::stoi(batchsize),
"dynamic",
precision,
time_info,
cv_all_img_names.size());
autolog.report();
}
}
void rec(int argc, char **argv)
{
std::string rec_model_file = argv[2];
std::string runtime_device = argv[3];
std::string precision = argv[4];
std::string num_threads = argv[5];
std::string batchsize = argv[6];
std::string img_dir = argv[7];
std::string dict_path = argv[8];
std::string config_path = argv[9];
if (strcmp(argv[4], "FP32") != 0 && strcmp(argv[4], "INT8") != 0)
{
std::cerr << "Only support FP32 or INT8." << std::endl;
exit(1);
}
auto Config = LoadConfigTxt(config_path);
int rec_image_height = int(Config["rec_image_height"]);
std::vector<cv::String> cv_all_img_names;
cv::glob(img_dir, cv_all_img_names);
auto charactor_dict = ReadDict(dict_path);
charactor_dict.insert(charactor_dict.begin(), "#"); // blank char for ctc
charactor_dict.push_back(" ");
auto rec_predictor = loadModel(rec_model_file, std::stoi(num_threads));
std::shared_ptr<PaddlePredictor> cls_predictor;
std::vector<double> time_info = {0, 0, 0};
for (int i = 0; i < cv_all_img_names.size(); ++i)
{
std::cout << "The predict img: " << cv_all_img_names[i] << std::endl;
cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
if (!srcimg.data)
{
std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << std::endl;
exit(1);
}
int width = srcimg.cols;
int height = srcimg.rows;
std::vector<int> upper_left = {0, 0};
std::vector<int> upper_right = {width, 0};
std::vector<int> lower_right = {width, height};
std::vector<int> lower_left = {0, height};
std::vector<std::vector<int>> box = {upper_left, upper_right, lower_right, lower_left};
std::vector<std::vector<std::vector<int>>> boxes = {box};
std::vector<std::string> rec_text;
std::vector<float> rec_text_score;
std::vector<double> times;
RunRecModel(boxes, srcimg, rec_predictor, rec_text, rec_text_score,
charactor_dict, cls_predictor, 0, &times, rec_image_height);
//// print recognized text
for (int i = 0; i < rec_text.size(); i++)
{
std::cout << i << "\t" << rec_text[i] << "\t" << rec_text_score[i]
<< std::endl;
}
time_info[0] += times[0];
time_info[1] += times[1];
time_info[2] += times[2];
}
// TODO: support autolog
if (strcmp(argv[9], "True") == 0)
{
AutoLogger autolog(rec_model_file,
runtime_device,
std::stoi(num_threads),
std::stoi(batchsize),
"dynamic",
precision,
time_info,
cv_all_img_names.size());
autolog.report();
}
}
int main(int argc, char **argv)
{
auto det_predictor = loadModel("ch_PP-OCRv3_det_infer.nb", 10);
auto rec_predictor = loadModel("ch_PP-OCRv3_rec_infer.nb", 10);
vector<string> message;
// check_params(argc, argv);
message = system(det_predictor, rec_predictor);
// 创建客户端套接字
int client_fd = socket(AF_INET, SOCK_STREAM, 0);
if (client_fd == -1)
{
std::cerr << "Failed to create socket\n";
exit(EXIT_FAILURE);
}
// 准备地址
sockaddr_in server_addr{};
server_addr.sin_family = AF_INET;
server_addr.sin_addr.s_addr = inet_addr("127.0.0.1");
server_addr.sin_port = htons(PORT);
// 连接服务器
if (connect(client_fd, (sockaddr *)&server_addr, sizeof(server_addr)) < 0)
{
std::cerr << "Failed to connect to server\n";
exit(EXIT_FAILURE);
}
// 准备参数
// std::vector<std::string> params = {"hello", "world", "from", "client"};
std::string mes;
for (const auto &param : message)
{
mes += param + '\n';
}
// 发送参数
if (send(client_fd, mes.c_str(), mes.size(), 0) < 0)
{
std::cerr << "Failed to send message\n";
exit(EXIT_FAILURE);
}
// if (strcmp(argv[1], "system") == 0) {
// system(argv);
// }
// if (strcmp(argv[1], "det") == 0) {
// det(argc, argv);
// }
// if (strcmp(argv[1], "rec") == 0) {
// rec(argc, argv);
// }
return 0;
}
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/micropiggy/raspberry-pi-ocr.git
git@gitee.com:micropiggy/raspberry-pi-ocr.git
micropiggy
raspberry-pi-ocr
raspberryPiOCR
master

搜索帮助