1 Star 0 Fork 4

mazaiting/人机交互期末项目

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
main.py 5.26 KB
一键复制 编辑 原始数据 按行查看 历史
XCZJust 提交于 2022-12-22 12:05 . update
from PyQt5 import QtCore, QtGui, QtWidgets
from ui import Ui_MainWindow
import sys
import cv2
import mediapipe as mp
import joblib
import numpy as np
class Ui_main(QtWidgets.QWidget, Ui_MainWindow):
def __init__(self, parent=None):
super().__init__(parent) # 父类的构造函数
self.widget = QtWidgets.QMainWindow()
self.timer_camera = QtCore.QTimer() # 定义定时器,用于控制显示视频的帧率
self.cap = cv2.VideoCapture() # 视频流
self.CAM_NUM = 0 # 为0时表示视频流来自笔记本内置摄像头
self.setupUi(self.widget)
self.slot_init() # 初始化槽函数
self.widget.show()
# 初始化mediaPipe框架
self.mp_drawing = mp.solutions.drawing_utils
self.mp_hands = mp.solutions.hands
self.hands = self.mp_hands.Hands(min_detection_confidence=0.7, min_tracking_confidence=0.5)
# 调用所有函数
def slot_init(self):
self.button_open_camera.clicked.connect(self.button_open_camera_clicked) # 若该按键被点击,启动定时器开始循环检测
self.timer_camera.timeout.connect(self.show_camera)
self.button_close.clicked.connect(self.widget.close)
def button_open_camera_clicked(self):
if self.timer_camera.isActive() == False:
flag = self.cap.open(self.CAM_NUM)
if flag == False:
QtWidgets.QMessageBox.warning(self, 'warning', "请检查相机于电脑是否连接正确", buttons=QtWidgets.QMessageBox.Ok)
else:
self.timer_camera.start(15) # 每过15ms从摄像头中取一帧显示
self.button_open_camera.setText('关闭摄像头')
else:
self.timer_camera.stop() # 关闭定时器
self.cap.release() # 释放视频流
self.label_show_camera.clear() # 清空视频显示区域
self.button_open_camera.setText('打开摄像头')
self.hands.close()
cv2.destroyAllWindows()
# 处理mediaPipe返回的数据
def data_clean(self, landmark):
data = landmark[0]
# 手部有21个坐标点,每个坐标点用三个轴代表,共有63个元素
try:
data = str(data)
data = data.strip().split('\n')
garbage = ['landmark {', ' visibility: 0.0', ' presence: 0.0', '}']
without_garbage = []
clean = []
for i in data:
if i not in garbage:
without_garbage.append(i)
for i in without_garbage:
i = i.strip()
clean.append(i[2:])
for i in range(0, len(clean)):
clean[i] = float(clean[i])
return ([clean])
except:
return (np.zeros([1, 63], dtype=int)[0])
def show_camera(self):
success, self.image = self.cap.read() # 从视频流中读取
show = cv2.flip(self.image, 1)
show = cv2.resize(show, (640, 480)) # 把读到的帧的大小重新设置为 640x480
if not success:
self.timer_camera.stop()
QtWidgets.QMessageBox.warning(self, 'warning', "打开失败!", buttons=QtWidgets.QMessageBox.Ok)
show = cv2.cvtColor(show, cv2.COLOR_BGR2RGB)
show.flags.writeable = False # 为了提高性能,可以选择将图像标记为不可写
results = self.hands.process(show) # 将图像输入mediaPipe模型,返回结果
show.flags.writeable = True # 恢复图像可写
show = cv2.cvtColor(show, cv2.COLOR_RGB2BGR) # 将图像颜色恢复
# 摄像头打开时,当模型检测到手掌,multi_hand_landmarks值为True
if results.multi_hand_landmarks:
# 可能有多个手掌,此处是遍历每个手掌
for hand_landmarks in results.multi_hand_landmarks:
# 在图像上绘制手部关节节点
self.mp_drawing.draw_landmarks(show, hand_landmarks, self.mp_hands.HAND_CONNECTIONS)
# 调用数据处理函数
cleaned_landmark = self.data_clean(results.multi_hand_landmarks)
# 如果检测到手掌,并且数据有效,则加载预训练模型
if cleaned_landmark:
clf = joblib.load('model/model.pkl')
y_pred = clf.predict(cleaned_landmark) # 模型预测
self.answer.setText(str(int(y_pred)))
self.answer.setStyleSheet(
"font-family: Microsoft YaHei; \n"
"font-size: 100px; \n"
"font-weight: 1800; \n"
"padding-left: 80px; \n"
"background: white; \n"
"border-style:solid;\n"
"border-color: black;\n"
)
else:
self.answer.setText(" ") # 未检测到手掌则清空label栏中内容
show = cv2.cvtColor(show, cv2.COLOR_BGR2RGB)
showImage = QtGui.QImage(show.data, show.shape[1], show.shape[0],
QtGui.QImage.Format_RGB888) # 把读取到的视频数据变成QImage形式
self.label_show_camera.setPixmap(QtGui.QPixmap.fromImage(showImage)) # 往显示视频的Label里 显示QImage
if __name__ == '__main__':
app = QtWidgets.QApplication(sys.argv)
ui = Ui_main()
sys.exit(app.exec_())
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/mazaiting/hand-gesture-recognition.git
git@gitee.com:mazaiting/hand-gesture-recognition.git
mazaiting
hand-gesture-recognition
人机交互期末项目
master

搜索帮助