代码拉取完成,页面将自动刷新
同步操作将从 宋佳蓁/Gaussianfilter 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
#include "./algorithm/base.h"
#include "./algorithm/files.h"
#include "./algorithm/cacheAccelerate.h"
#include "./algorithm/openmp.h"
#include "./algorithm/pthread.h"
#include "./algorithm/simd.h"
#include "./algorithm/test.h"
#include "./algorithm/camera.h"
int epoch = 2;
string DIR_PATH = "C:\Users\Emily2002\Downloads\parallel-project-master\img";
//Mat image1;
//Mat image2;
//
//int g_d = 15;
//int g_sigmaColor = 20;
//int g_sigmaSpace = 50;
//extern pthread_barrier_t barrier;
//
//void on_Trackbar(int, void *) {
// bilateralFilter(image1, image2, g_d, g_sigmaColor, g_sigmaSpace);
// imshow("output", image2);
//}
int main() {
#ifdef CAMERA
useCamera();
#endif
vector<string> imgPathList = getFilePathList(DIR_PATH);
#ifdef TEST
//载入图像
// Mat image = imread("/home/joshua/Projects/C++/Parallel/FH/img/9.jpg");
Mat image1 = imread("/home/joshua/Projects/C++/Parallel/FH/img/2.jpg");
if (image1.empty())
{
cout << "Could not load image ... " << endl;
return -1;
}
image2 = Mat::zeros(image1.rows, image1.cols, image1.type());
bilateralFilter(image1, image2, g_d, g_sigmaColor, g_sigmaSpace);
namedWindow("output");
createTrackbar("核直径","output", &g_d, 50, on_Trackbar);
createTrackbar("颜色空间方差","output", &g_sigmaColor, 100, on_Trackbar);
createTrackbar("坐标空间方差","output", &g_sigmaSpace, 100, on_Trackbar);
// imshow("input", image1);
imshow("output", image2);
waitKey(0);
#endif
#ifdef CV_GF
{
Timer give_me_a_name("OpenCVGaussianFilter");
for (int e = 0; e < epoch; e++) {
for (auto &i : imgPathList) {
Mat Mask;
//获取二维高斯滤波模板
generateGaussMask(Mask, cv::Size(3, 3), 0.8);
Mat dst;
Mat src = imread(i, IMREAD_GRAYSCALE);
if (src.empty()) {
return -1;
}
//暴力实现
// GaussianFilter(src, dst, Mask);
GaussianBlur(src, dst,Size(3,3), 0.8);
dst.release();
src.release();
Mask.release();
}
}
}
#endif
#ifdef GF
{
Timer give_me_a_name("GaussianFilter");
for (int e = 0; e < epoch; e++) {
for (auto &i : imgPathList) {
Mat Mask;
//获取二维高斯滤波模板
generateGaussMask(Mask, cv::Size(3, 3), 0.8);
Mat dst;
Mat src = imread(i, IMREAD_GRAYSCALE);
if (src.empty()) {
return -1;
}
//暴力实现
GaussianFilter(src, dst, Mask);
dst.release();
src.release();
Mask.release();
}
}
}
#endif
#ifdef CACHE_GF
{
Timer give_me_a_name("cacheGaussianFilter");
for (int e = 0; e < epoch; e++) {
for (auto &i : imgPathList) {
Mat Mask;
//获取二维高斯滤波模板
generateGaussMask(Mask, cv::Size(3, 3), 0.8);
Mat dst;
Mat src = imread(i, IMREAD_GRAYSCALE);
if (src.empty()) {
return -1;
}
cacheGaussianFilter(src, dst, Mask);
dst.release();
src.release();
Mask.release();
}
}
}
#endif
#ifdef UNROLL_GF
{
Timer give_me_a_name("unrollGaussianFilter");
for (int e = 0; e < epoch; e++) {
for (auto &i : imgPathList) {
Mat Mask;
//获取二维高斯滤波模板
generateGaussMask(Mask, cv::Size(3, 3), 0.8);
Mat dst;
Mat src = imread(i, IMREAD_GRAYSCALE);
if (src.empty()) {
return -1;
}
unrollGaussianFilter(src, dst, Mask);
dst.release();
src.release();
Mask.release();
}
}
}
#endif
#ifdef OMP_GF
{
Timer give_me_a_name("ompGaussianFilter");
for (int e = 0; e < epoch; e++) {
for (auto &i : imgPathList) {
Mat Mask;
//获取二维高斯滤波模板
generateGaussMask(Mask, cv::Size(3, 3), 0.8);
Mat dst;
Mat src = imread(i, IMREAD_GRAYSCALE);
if (src.empty()) {
return -1;
}
ompGaussianFilter(src, dst, Mask);
dst.release();
src.release();
Mask.release();
}
}
}
#endif
#ifdef PTHREAD_GF
{
Timer give_me_a_name("pthreadGaussianFilter");
for (int e = 0; e < epoch; e++) {
for (auto &i : imgPathList) {
Mat window;
//获取二维高斯滤波模板
generateGaussMask(window, cv::Size(3, 3), 0.8);
Mat dst;
Mat src = imread(i, IMREAD_GRAYSCALE);
if (src.empty()) {
return -1;
}
pthreadGaussianFilter(src, dst, window);
dst.release();
src.release();
window.release();
}
}
}
#endif
#ifdef AVX_GF
{
Timer give_me_a_name("avcGaussianFilter");
for (int e = 0; e < epoch; e++) {
for (auto &i : imgPathList) {
Mat Mask;
//获取二维高斯滤波模板
generateGaussMask(Mask, cv::Size(3, 3), 0.8);
Mat dst;
Mat src = imread(i, IMREAD_GRAYSCALE);
if (src.empty()) {
return -1;
}
avxGaussianFilter(src, dst, Mask);
dst.release();
src.release();
Mask.release();
}
}
}
#endif
#ifdef SEPARATE_GF
{
Timer give_me_a_name("separateGaussianFilter");
for (int e = 0; e < epoch; e++) {
for (auto &i : imgPathList) {
Mat dst;
Mat src = imread(i, IMREAD_GRAYSCALE);
if (src.empty()) {
return -1;
}
//分离实现
separateGaussianFilter(src, dst, 3, 0.8);
}
}
}
#endif
#ifdef BIL_GF
{
Timer give_me_a_name("bilateralFilter");
for (int e = 0; e < epoch; e++) {
for (auto &i : imgPathList) {
Mat dst;
Mat src = imread(i, IMREAD_GRAYSCALE);
if (src.empty()) {
return -1;
}
BilateralFilter(src, dst, Size(3, 3), 10, 30);
//暴力实现
dst.release();
src.release();
}
}
}
#endif
// cv::namedWindow("src");
// cv::imshow("src", src);
// cv::namedWindow("暴力实现", CV_WINDOW_NORMAL);
// cv::imshow("暴力实现", dst1);
// cv::namedWindow("分离实现", CV_WINDOW_NORMAL);
// cv::imshow("分离实现", dst2);
//cv::imwrite("I:\\Learning-and-Practice\\2019Change\\Image process algorithm\\Image Filtering\\GaussianFilter\\txt.jpg", dst2);
// cv::waitKey(0);
return 0;
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。