1 Star 0 Fork 0

李贞/stock_picker

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
stacked_lstm.py 18.23 KB
一键复制 编辑 原始数据 按行查看 历史
#!/usr/bin/python
import warnings
warnings.filterwarnings("ignore")
from keras.models import Sequential
from keras.layers import LSTM, Dense, Dropout, Conv1D, Flatten, Reshape, GlobalMaxPooling3D, Conv1D, Conv2D, Conv3D, Flatten, Reshape, GlobalMaxPooling3D, TimeDistributed, ConvLSTM2D
from keras.layers.normalization import BatchNormalization
import numpy as np
import json
import os, sys
from keras.optimizers import SGD
from lstm import do_main
import datetime
from Robinhood import Robinhood
from sklearn.preprocessing import MinMaxScaler
def main(argv):
try:
spy={}
tickers=""
MAX_SIZE=10
SHUFFLE_STOCKS=False
batch_size=256
epochs=200
minimum_acc=0.03
MAX_ARGS=11
USE_ADAM=False
predownloaded_csv=''
num_of_years=1
test=0
tickers = ['A', 'AAL', 'AAP', 'AAPL', 'ABBV', 'ABC', 'ABMD', 'ABT', 'ACN', 'ADBE', 'ADI', 'ADM', 'ADP', 'ADS', 'ADSK', 'AEE', 'AEP', 'AES', 'AET', 'AFL', 'AGN', 'AIG', 'AIV', 'AIZ', 'AJG', 'AKAM', 'ALB', 'ALGN', 'ALK', 'ALL', 'ALLE', 'ALXN', 'AMAT', 'AMD', 'AME', 'AMG', 'AMGN', 'AMP', 'AMT', 'AMZN', 'ANDV', 'ANSS', 'ANTM', 'AON', 'AOS', 'APA', 'APC', 'APD', 'APH', 'APTV', 'ARE', 'ARNC', 'ATVI', 'AVB', 'AVGO', 'AVY', 'AWK', 'AXP', 'AZO', 'BA', 'BAC', 'BAX', 'BBT', 'BBY', 'BDX', 'BEN', 'BF.B', 'BHF', 'BHGE', 'BIIB', 'BK', 'BKNG', 'BLK', 'BLL', 'BMY', 'BR', 'BRK.B', 'BSX', 'BWA', 'BXP', 'C', 'CA', 'CAG', 'CAH', 'CAT', 'CB', 'CBOE', 'CBRE', 'CBS', 'CCI', 'CCL', 'CDNS', 'CELG', 'CERN', 'CF', 'CFG', 'CHD', 'CHRW', 'CHTR', 'CI', 'CINF', 'CL', 'CLX', 'CMA', 'CMCSA', 'CME', 'CMG', 'CMI', 'CMS', 'CNC', 'CNP', 'COF', 'COG', 'COL', 'COO', 'COP', 'COST', 'COTY', 'CPB', 'CRM', 'CSCO', 'CSX', 'CTAS', 'CTL', 'CTSH', 'CTXS', 'CVS', 'CVX', 'CXO', 'D', 'DAL', 'DE', 'DFS', 'DG', 'DGX', 'DHI', 'DHR', 'DIS', 'DISCA', 'DISCK', 'DISH', 'DLR', 'DLTR', 'DOV', 'DPS', 'DRE', 'DRI', 'DTE', 'DUK', 'DVA', 'DVN', 'DWDP', 'DXC', 'EA', 'EBAY', 'ECL', 'ED', 'EFX', 'EIX', 'EL', 'EMN', 'EMR', 'EOG', 'EQIX', 'EQR', 'EQT', 'ES', 'ESRX', 'ESS', 'ETFC', 'ETN', 'ETR', 'EVHC', 'EVRG', 'EW', 'EXC', 'EXPD', 'EXPE', 'EXR', 'F', 'FAST', 'FB', 'FBHS', 'FCX', 'FDX', 'FE', 'FFIV', 'FIS', 'FISV', 'FITB', 'FL', 'FLIR', 'FLR', 'FLS', 'FLT', 'FMC', 'FOX', 'FOXA', 'FRT', 'FTI', 'FTV', 'GD', 'GE', 'GGP', 'GILD', 'GIS', 'GLW', 'GM', 'GOOG', 'GOOGL', 'GPC', 'GPN', 'GPS', 'GRMN', 'GS', 'GT', 'GWW', 'HAL', 'HAS', 'HBAN', 'HBI', 'HCA', 'HCP', 'HD', 'HES', 'HFC', 'HIG', 'HII', 'HLT', 'HOG', 'HOLX', 'HON', 'HP', 'HPE', 'HPQ', 'HRB', 'HRL', 'HRS', 'HSIC', 'HST', 'HSY', 'HUM', 'IBM', 'ICE', 'IDXX', 'IFF', 'ILMN', 'INCY', 'INFO', 'INTC', 'INTU', 'IP', 'IPG', 'IPGP', 'IQV', 'IR', 'IRM', 'ISRG', 'IT', 'ITW', 'IVZ', 'JBHT', 'JCI', 'JEC', 'JEF', 'JNJ', 'JNPR', 'JPM', 'JWN', 'K', 'KEY', 'KHC', 'KIM', 'KLAC', 'KMB', 'KMI', 'KMX', 'KO', 'KORS', 'KR', 'KSS', 'KSU', 'L', 'LB', 'LEG', 'LEN', 'LH', 'LKQ', 'LLL', 'LLY', 'LMT', 'LNC', 'LNT', 'LOW', 'LRCX', 'LUV', 'LYB', 'M', 'MA', 'MAA', 'MAC', 'MAR', 'MAS', 'MAT', 'MCD', 'MCHP', 'MCK', 'MCO', 'MDLZ', 'MDT', 'MET', 'MGM', 'MHK', 'MKC', 'MLM', 'MMC', 'MMM', 'MNST', 'MO', 'MOS', 'MPC', 'MRK', 'MRO', 'MS', 'MSCI', 'MSFT', 'MSI', 'MTB', 'MTD', 'MU', 'MYL', 'NBL', 'NCLH', 'NDAQ', 'NEE', 'NEM', 'NFLX', 'NFX', 'NI', 'NKE', 'NKTR', 'NLSN', 'NOC', 'NOV', 'NRG', 'NSC', 'NTAP', 'NTRS', 'NUE', 'NVDA', 'NWL', 'NWS', 'NWSA', 'O', 'OKE', 'OMC', 'ORCL', 'ORLY', 'OXY', 'PAYX', 'PBCT', 'PCAR', 'PCG', 'PEG', 'PEP', 'PFE', 'PFG', 'PG', 'PGR', 'PH', 'PHM', 'PKG', 'PKI', 'PLD', 'PM', 'PNC', 'PNR', 'PNW', 'PPG', 'PPL', 'PRGO', 'PRU', 'PSA', 'PSX', 'PVH', 'PWR', 'PX', 'PXD', 'PYPL', 'QCOM', 'QRVO', 'RCL', 'RE', 'REG', 'REGN', 'RF', 'RHI', 'RHT', 'RJF', 'RL', 'RMD', 'ROK', 'ROP', 'ROST', 'RSG', 'RTN', 'SBAC', 'SBUX', 'SCG', 'SCHW', 'SEE', 'SHW', 'SIVB', 'SJM', 'SLB', 'SLG', 'SNA', 'SNPS', 'SO', 'SPG', 'SPGI', 'SRCL', 'SRE', 'STI', 'STT', 'STX', 'STZ', 'SWK', 'SWKS', 'SYF', 'SYK', 'SYMC', 'SYY', 'T', 'TAP', 'TDG', 'TEL', 'TGT', 'TIF', 'TJX', 'TMK', 'TMO', 'TPR', 'TRIP', 'TROW', 'TRV', 'TSCO', 'TSN', 'TSS', 'TTWO', 'TWTR', 'TXN', 'TXT', 'UA', 'UAA', 'UAL', 'UDR', 'UHS', 'ULTA', 'UNH', 'UNM', 'UNP', 'UPS', 'URI', 'USB', 'UTX', 'V', 'VAR', 'VFC', 'VIAB', 'VLO', 'VMC', 'VNO', 'VRSK', 'VRSN', 'VRTX', 'VTR', 'VZ', 'WAT', 'WBA', 'WDC', 'WEC', 'WELL', 'WFC', 'WHR', 'WLTW', 'WM', 'WMB', 'WMT', 'WRK', 'WU', 'WY', 'WYNN', 'XEC', 'XEL', 'XL', 'XLNX', 'XOM', 'XRAY', 'XRX', 'XYL', 'YUM', 'ZBH', 'ZION', 'ZTS']
if(len(argv)<=MAX_ARGS and len(argv)>=2):
for argument in argv:
if(argument.startswith('-m=')):
minimum_acc=int(argument.split('-m=')[1])
print('Minimum accuracy is now %f'%minimum_acc)
if(argument.startswith('-b=')):
batch_size=int(argument.split('-b=')[1])
print('Batch size is now %d'%batch_size)
if(argument.startswith('-e=')):
epochs=int(argument.split('-e=')[1])
print('Number of epochs is now %d'%epochs)
if(argument.startswith('-s=')):
MAX_SIZE=int(argument.split('-s=')[1])
print('Window size is now %d'%MAX_SIZE)
if(argument.startswith('-y=')):
num_of_years=int(argument.split('-y=')[1])
print('Going to try to gather %d years worth of data'%num_of_years)
if(argument=='-a'):
USE_ADAM=True
print('Going to use the adam loss system over Stochastic Gradient Descent')
if(argument=='-r'):
SHUFFLE_STOCKS=True
print('Going to shuffle the initial stock list order')
if(argument=='-d'):
for ticker in tickers:
spy[ticker]=Robinhood().get_historical_quotes(ticker, 'day', 'year')
try:
os.unlink('tempdata.json')
except:
pass
json.dump(spy, open('tempdata.json', 'w'))
print("Download complete, you shouldn't try to download the stocks again")
if(argument.startswith('-t=')):
test=int(argument.split('-t=')[1])
print("Going to use test %d"%test)
if(test==0):
batch_size=256
elif(test==1):
batch_size=256
elif(test==2):
epochs=50
batch_size=32
if(argument.startswith('-p=')):
predownloaded_csv=argument.split('-p=')[1]
print("Going to use %s as the data source"%predownloaded_csv)
if(predownloaded_csv==''):
spy=json.load(open('tempdata.json'))
else:
import pandas as pd
results=[]
historicals={}
ih=[]
df=pd.read_csv(predownloaded_csv)
previous_name=""
count=0
#for date, name, sopen, high, low, close, volume in zip(df['date'], df['Name'], df['open'], df['high'], df['low'], df['close'], df['volume']):
for date, name, sopen, high, low, close, volume in zip(df['begins_at'], df['symbol'], df['open_price'], df['high_price'], df['low_price'], df['close_price'], df['volume']):
if(name != previous_name and previous_name!="" and len(ih)>0):
historicals['historicals']=ih
results.append(historicals)
spy[name]={'results':results}
results=[]
historicals={}
ih=[]
record = datetime.datetime.strptime(date, '%Y-%m-%d')
since = datetime.datetime.now() - datetime.timedelta(days=num_of_years*365)
ohcl={ 'volume':volume, 'open_price':sopen, 'low_price':low, 'high_price':high, 'close_price':close }
if(record>since):
ih.append(ohcl)
count=count+1
previous_name=name
if( previous_name!="" and len(ih)>0):
historicals['historicals']=ih
results.append(historicals)
spy[previous_name]={'results':results}
data_dim = MAX_SIZE
cont=True
stddevfactor=1
while(cont):
good_stock_ticker=[]
tmin={}
tmax={}
num_of_good_tickers=0
length_in_days=len(spy['AAPL']['results'][0]['historicals'])
timesteps=length_in_days-MAX_SIZE-1
print("Length in days: "+str(length_in_days))
for other_ticker in tickers:
try:
if ( len(spy[other_ticker]['results'][0]['historicals'])==length_in_days ):
good_stock_ticker.append(other_ticker)
num_of_good_tickers+=1
except:
pass
nb_classes=num_of_good_tickers
if(SHUFFLE_STOCKS):
import random
random.shuffle(good_stock_ticker)
print("Number of detected valid stocks: "+str(num_of_good_tickers))
for other_ticker in range(num_of_good_tickers):
tmax[good_stock_ticker[other_ticker]]=max([ np.float32(spy[good_stock_ticker[other_ticker]]['results'][0]['historicals'][x]['close_price']) for x in range(length_in_days) ])
tmin[good_stock_ticker[other_ticker]]=min([ np.float32(spy[good_stock_ticker[other_ticker]]['results'][0]['historicals'][x]['close_price']) for x in range(length_in_days) ])
close_values=[]
close_test_values=[]
results=[]
count_of_results=[]
for y in range(num_of_good_tickers):
count_of_results.append(0)
for z in range(timesteps):
subresult=[]
max_value_index=-1
max_value=-1
for y in range(num_of_good_tickers):
val1=np.float32(spy[good_stock_ticker[y]]['results'][0]['historicals'][MAX_SIZE+z+1]['close_price'])
val2=np.float32(spy[good_stock_ticker[y]]['results'][0]['historicals'][MAX_SIZE+z]['close_price'])
tempmax=tmax[good_stock_ticker[y]]
tempmin=tmin[good_stock_ticker[y]]
if(tempmax!=tempmin):
current_swing=(val1-val2)/(tempmax-tempmin)
if(current_swing>max_value ): #and count_of_results[y]==0):
max_value=current_swing
max_value_index=y
for y in range(num_of_good_tickers):
if y==max_value_index:
subresult.append(1)
count_of_results[y]+=1
else:
subresult.append(0)
results.append(subresult)
high_water_mark=np.mean(count_of_results)+stddevfactor*np.std(count_of_results)
low_water_mark=np.mean(count_of_results)-stddevfactor*np.std(count_of_results)
restart=False
for y in range(num_of_good_tickers):
if( not ( count_of_results[y]>=low_water_mark and count_of_results[y]<=high_water_mark ) ):
restart=True
tickers.remove(good_stock_ticker[y])
stddevfactor+=.25
if(restart):
print("\nGoing to remove any result that had more than %f entries and less than %f entries, as they are oversampled/undersampled\n"%(high_water_mark, low_water_mark))
continue
results=np.asarray(results)
decoder = Sequential()
if(test==0):
close_values=[[[np.float32(spy[good_stock_ticker[y]]['results'][0]['historicals'][x+z]['close_price']) for x in range(MAX_SIZE)] for y in range(num_of_good_tickers)] for z in range(timesteps)]
close_test_values=[[[np.float32(spy[good_stock_ticker[y]]['results'][0]['historicals'][x+z]['close_price']) for x in range(MAX_SIZE)] for y in range(num_of_good_tickers)] for z in range(timesteps,timesteps+1)]
hidden=nb_classes
decoder.add(LSTM(hidden, return_sequences=True, input_shape=( nb_classes, data_dim)))
decoder.add(Dropout(0.5))
decoder.add(LSTM(hidden, return_sequences=True))
decoder.add(Dropout(0.5))
decoder.add(LSTM(hidden))
decoder.add(Dropout(0.5))
decoder.add(Dense(hidden, activation='relu'))
decoder.add(Dropout(0.5))
elif(test==1):
close_values=[[[np.float32(spy[good_stock_ticker[y]]['results'][0]['historicals'][x+z]['close_price']) for x in range(MAX_SIZE)] for y in range(num_of_good_tickers)] for z in range(timesteps)]
close_test_values=[[[np.float32(spy[good_stock_ticker[y]]['results'][0]['historicals'][x+z]['close_price']) for x in range(MAX_SIZE)] for y in range(num_of_good_tickers)] for z in range(timesteps,timesteps+1)]
hidden=24
decoder.add(LSTM(hidden, return_sequences=True, input_shape=( nb_classes, data_dim)))
decoder.add(Conv1D(hidden, 4, activation='relu'))
decoder.add(LSTM(hidden, return_sequences=True))
decoder.add(Conv1D(hidden, 3, activation='relu'))
decoder.add(LSTM(hidden, return_sequences=True))
decoder.add(Conv1D(hidden, 2, activation='relu'))
decoder.add(LSTM(hidden))
decoder.add(Dense(hidden, activation='relu'))
decoder.add(Dropout(0.2))
elif(test==2):
close_values=[[[[ np.float32(spy[good_stock_ticker[y]]['results'][0]['historicals'][x+z]['close_price']) if chan==0 else np.float32(spy[good_stock_ticker[y]]['results'][0]['historicals'][x+z]['high_price']) if chan==1 else np.float32(spy[good_stock_ticker[y]]['results'][0]['historicals'][x+z]['low_price']) if chan==2 else np.float32(spy[good_stock_ticker[y]]['results'][0]['historicals'][x+z]['open_price']) if chan==3 else np.float32(spy[good_stock_ticker[y]]['results'][0]['historicals'][x+z]['volume']) for chan in range(5)] for x in range(MAX_SIZE)] for y in range(num_of_good_tickers)] for z in range(timesteps)]
close_test_values=[[[[ np.float32(spy[good_stock_ticker[y]]['results'][0]['historicals'][x+z]['close_price']) if chan==0 else np.float32(spy[good_stock_ticker[y]]['results'][0]['historicals'][x+z]['high_price']) if chan==1 else np.float32(spy[good_stock_ticker[y]]['results'][0]['historicals'][x+z]['low_price']) if chan==2 else np.float32(spy[good_stock_ticker[y]]['results'][0]['historicals'][x+z]['open_price']) if chan==3 else np.float32(spy[good_stock_ticker[y]]['results'][0]['historicals'][x+z]['volume']) for chan in range(5)] for x in range(MAX_SIZE)] for y in range(num_of_good_tickers)] for z in range(timesteps,timesteps+1)]
hidden=20
decoder.add(Reshape((nb_classes, MAX_SIZE, 5, 1), input_shape=(nb_classes, MAX_SIZE, 5)))
decoder.add(ConvLSTM2D(filters=hidden, kernel_size=(6, 6), padding='same', return_sequences=True))
decoder.add(BatchNormalization())
decoder.add(ConvLSTM2D(filters=hidden, kernel_size=(5, 5), padding='same', return_sequences=True))
decoder.add(BatchNormalization())
decoder.add(ConvLSTM2D(filters=hidden, kernel_size=(4, 4), padding='same', return_sequences=True))
decoder.add(BatchNormalization())
decoder.add(ConvLSTM2D(filters=hidden, kernel_size=(3, 3), padding='same', return_sequences=True))
decoder.add(BatchNormalization())
decoder.add(Conv3D(filters=1, kernel_size=(3, 3, 3), activation='sigmoid', padding='same', data_format='channels_last'))
decoder.add(Dense(hidden, activation='relu'))
decoder.add(Dropout(0.2))
decoder.add(Flatten())
decoder.add(Dense(nb_classes, activation='softmax'))
if(not USE_ADAM):
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
decoder.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
else:
decoder.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
decoder.summary()
close_values=np.asarray(close_values)
close_test_values=np.asarray(close_test_values)
print("Shape of close_values is: "+str(close_values.shape))
result=decoder.fit(close_values, results, batch_size=batch_size, epochs=epochs)
count=epochs
previous_acc=0
previous_loss=0
min_back=minimum_acc
last_values=[]
while(result.history['acc'][0]<minimum_acc and count<10*epochs and result.history['loss'][0]!=previous_loss):
previous_loss=result.history['loss'][0]
previous_acc=result.history['acc'][0]
result=decoder.fit(close_values, results, batch_size=batch_size, epochs=1)
count+=1
print("Epoch: %d"%count)
if(len(last_values)>10 and np.std(last_values[-10:])<0.0001):
break
last_values.append(result.history['acc'][0])
minimum_acc-=0.0001
previous_acc=result.history['acc'][0]
minimum_acc=min_back
predictions=decoder.predict(close_test_values, batch_size=batch_size)
if(do_main(['', good_stock_ticker[np.argmax(predictions)], '-d'])):
print("\nSystem indicated that it should be %s with a confidence of %f and accuracy of %f\n"%(good_stock_ticker[np.argmax(predictions)], predictions[0][np.argmax(predictions)], previous_acc))
cont=False
else:
print("\nSystem indicated that %s will decline tomorrow, skipping..."%good_stock_ticker[np.argmax(predictions)])
tickers.remove(good_stock_ticker[np.argmax(predictions)])
except:
print("Something went wrong. Returning failure to rerun the previous test.")
return 1
return 0
if __name__ == "__main__":
sys.exit(main(sys.argv))
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/lizhen_hbu/stock_picker.git
git@gitee.com:lizhen_hbu/stock_picker.git
lizhen_hbu
stock_picker
stock_picker
master

搜索帮助

0d507c66 1850385 C8b1a773 1850385