代码拉取完成,页面将自动刷新
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import os
import sys
from config import Config
from torch import float32
#---------------------------------特殊处理---(如Bearing1_4.csv)--------------#
"""
for i in range(1,2449):
j='0'*(5-len(str(i)))+str(i)
A=pd.read_csv('DataSets/Bearing1_4_Ori/acc_{}.csv'.format(j),header=None)
n_loc=np.array(A).shape[0]
list_data=[]
for i in range(n_loc):
list_data+=[A.iloc[i][0].replace(';',',')]
Data='\n'.join(list_data)
with open('DataSets/Bearing1_4/acc_{}.csv'.format(j),'w+',encoding='utf-8') as f:
f.write(Data)
"""
#---------------------------------------------------------#
#------------读取原始数据---------------#
path_data = Config.path_data
listdir = os.listdir(path_data)
listdir.sort()
# print(listdir)
data_BearingX_X = np.empty((0,2560),dtype=np.float16)
print(data_BearingX_X.shape)
for n, name in enumerate(listdir):
if 'acc' in name:
BearingX_X=pd.read_csv(path_data+name,header=None)[[4]]
# print(BearingX_X)
data_BearingX_X = np.append(data_BearingX_X,BearingX_X.values.reshape(1,-1),axis=0)
print(data_BearingX_X.shape)
np.savetxt(path_data.replace('\\','_')+'.csv', data_BearingX_X, delimiter = ',')
'''
plt.plot(data_BearingX_X,linewidth=0.3)
#设置坐标轴刻度
# plt.ylim(-50,50)
plt.xticks(np.arange(0, 3000, 500))
plt.ylabel('振动程度(g)')
plt.xlabel('采样时间(x10s)')
plt.grid(linestyle="--")
plt.savefig('PHW12_sample1_3.svg')
plt.savefig('PHW12_sample1_3.png',bbox_inches='tight',dpi=800)
plt.show()
'''
'''
#----------数据归一化-----------#
std_data=pd.read_csv('val_Bearing1_3.csv',index_col=0) #index_col=0把第一列作为行索引,默认第一行为列索引
n_col=len(list(std_data))
print(n_col)
for i in range(n_col):
x=abs(std_data[str(i)])
std_data[str(i)]=(x-min(x))/(max(x)-min(x))
std_data.to_csv('val_Bearing1_3_std.csv')
plt.plot(std_data,linewidth=0.3)
#设置坐标轴刻度
plt.xticks(np.arange(0, 1900, 300))
plt.show()
'''
'''
#----------------训练集和测试集划分-----------#
#对列进行划分
train_test_data=pd.read_csv('Bearing1_3_std.csv',index_col=0)
n_col=len(list(train_test_data))
a=[str(i) for i in range(0,int(n_col*0.8))]
b=[str(i) for i in range(int(n_col*0.8),n_col)]
train_data=train_test_data[a]
test_data=train_test_data[b]
train_data.to_csv('Bearing1_3_train_data.csv')
test_data.to_csv('Bearing1_3_test_data.csv')
#按行划分数据集,随机划分
import random
train_test_data=pd.read_csv('Bearing1_3_std.csv',index_col=0)
n_row=np.array(train_test_data).shape[0]
print(n_row)
test_select_sample=[]
train_select_sample=[]
for i in range(1,n_row+1):
if i%5==0:
test_select_sample.append(i)
else: train_select_sample.append(i)
train_data=train_test_data.loc[train_select_sample]
test_data=train_test_data.loc[test_select_sample]
train_data.to_csv('Bearing1_3_train_data.csv')
test_data.to_csv('Bearing1_3_test_data.csv')
# train_data=test_data.iloc[[1,1,1]] #iloc使用索引截取
# train_data=test_data.loc[[1,1,1]] #使用标签截取
# print(train_data)
# size_input=np.array(train_data).shape[1]
# print(size_input)
'''
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。