代码拉取完成,页面将自动刷新
# 导入所需模块
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
from sklearn.cluster import KMeans, DBSCAN, Birch
# 读取数据集
data = pd.read_csv('student-mat.csv', sep=';')
# 对数据进行预处理,将类别型变量转换为数值型变量
data['school'] = data['school'].map({'GP':0, 'MS':1})
data['sex'] = data['sex'].map({'F':0, 'M':1})
data['address'] = data['address'].map({'U':0, 'R':1})
data['famsize'] = data['famsize'].map({'LE3':0, 'GT3':1})
data['Pstatus'] = data['Pstatus'].map({'A':0, 'T':1})
data['Mjob'] = data['Mjob'].map({'teacher':0, 'health':1, 'services':2, 'at_home':3, 'other':4})
data['Fjob'] = data['Fjob'].map({'teacher':0, 'health':1, 'services':2, 'at_home':3, 'other':4})
data['reason'] = data['reason'].map({'home':0, 'reputation':1, 'course':2, 'other':3})
data['guardian'] = data['guardian'].map({'mother':0, 'father':1, 'other':2})
data['schoolsup'] = data['schoolsup'].map({'no':0, 'yes':1})
data['famsup'] = data['famsup'].map({'no':0, 'yes':1})
data['paid'] = data['paid'].map({'no':0, 'yes':1})
data['activities'] = data['activities'].map({'no':0, 'yes':1})
data['nursery'] = data['nursery'].map({'no':0, 'yes':1})
data['higher'] = data['higher'].map({'no':0, 'yes':1})
data['internet'] = data['internet'].map({'no':0, 'yes':1})
data['romantic'] = data['romantic'].map({'no':0, 'yes':1})
# 将输出的G3列转换为二元类别分类问题,'fail'为0,其他为1
data['G3'] = data['G3'].apply(lambda x: 0 if x < 10 else 1)
# 使用train_test_split进行数据集划分,划分出训练集、校验集和测试集
train_validation, test = train_test_split(data, test_size=0.2, stratify=data['G3'], random_state=42)
train, validation = train_test_split(train_validation, test_size=0.25, stratify=train_validation['G3'], random_state=42)
# 定义分类算法函数
def classify(model):
# 训练模型
model.fit(train.drop('G3', axis=1), train['G3'])
# 在校验集中进行预测
validation_predicted = model.predict(validation.drop('G3', axis=1))
# 输出模型在校验集上的准确率和分类报告
print("Accuracy on validation set: %.2f%%" % (accuracy_score(validation['G3'], validation_predicted)*100))
print(classification_report(validation['G3'], validation_predicted))
# 绘制混淆矩阵
cm = confusion_matrix(validation['G3'], validation_predicted)
print("\nConfusion Matrix:\n", cm)
# 输出模型在测试集上的准确率和分类报告
test_predicted = model.predict(test.drop('G3', axis=1))
print("\nAccuracy on test set: %.2f%%" % (accuracy_score(test['G3'], test_predicted)*100))
print(classification_report(test['G3'], test_predicted))
# 绘制混淆矩阵
cm = confusion_matrix(test['G3'], test_predicted)
print("\nConfusion Matrix:\n", cm)
# 使用决策树分类算法进行建模
tree = DecisionTreeClassifier(random_state=42)
print("Decision Tree Classifier:")
classify(tree)
# 使用神经网络进行建模
nn = MLPClassifier(random_state=42)
print("\n3-Layer Neural Network Classifier:")
classify(nn)
# 使用SVM分类算法进行建模
svm = SVC(random_state=42)
print("\nSupport Vector Machine Classifier:")
classify(svm)
# K-means聚类
kmeans = KMeans(n_clusters=2, random_state=42)
kmeans.fit(data.drop('G3', axis=1))
data['kmeans_labels'] = kmeans.labels_
# Birch聚类
birch = Birch(n_clusters=2)
birch.fit(data.drop('G3', axis=1))
data['birch_labels'] = birch.labels_
# DBSCAN聚类
dbscan = DBSCAN(min_samples=5, eps=0.3)
dbscan.fit(data.drop('G3', axis=1))
data['dbscan_labels'] = dbscan.labels_
# 按照K-means、Birch和DBSCAN聚类结果对G3进行分类
data['kmeans_G3'] = data['kmeans_labels'].apply(lambda x: 0 if x==0 else 1)
data['birch_G3'] = data['birch_labels'].apply(lambda x: 0 if x==0 else 1)
data['dbscan_G3'] = data['dbscan_labels'].apply(lambda x: 0 if x==-1 else 1)
# 将聚类结果和实际结果进行比较评估
print("\nK-means Clustering Results:")
print(classification_report(data['G3'], data['kmeans_G3']))
print("\nBirch Clustering Results:")
print(classification_report(data['G3'], data['birch_G3']))
print("\nDBSCAN Clustering Results:")
print(classification_report(data['G3'], data['dbscan_G3']))
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。