代码拉取完成,页面将自动刷新
同步操作将从 TensorLayer/cyclegan 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import argparse
import time, multiprocessing
import numpy as np
import tensorflow as tf
import tensorlayer as tl
import models
from data import flags, data_A, data_B, im_test_A, im_test_B, n_step_per_epoch
im_test_A = np.asarray(im_test_A, dtype=np.float32) / 127.5 - 1
im_test_B = np.asarray(im_test_B, dtype=np.float32) / 127.5 - 1
sample_A = im_test_A[0:5] # some images for visualization
sample_B = im_test_B[0:5]
# tl.prepro.threading_data(sample_A, prep)
# ni = int(np.sqrt(flags.batch_size))
tl.vis.save_images(sample_A, [1, 5], flags.sample_dir+'/_sample_A.png')
tl.vis.save_images(sample_B, [1, 5], flags.sample_dir+'/_sample_B.png')
def train(parallel, kungfu_option):
Gab = models.get_G(name='Gab')
Gba = models.get_G(name='Gba')
Da = models.get_D(name='Da')
Db = models.get_D(name='Db')
Gab.train()
Gba.train()
Da.train()
Db.train()
lr_v = tf.Variable(flags.lr_init)
# optimizer_Gab_Db = tf.optimizers.Adam(lr_v, beta_1=flags.beta_1)
# optimizer_Gba_Da = tf.optimizers.Adam(lr_v, beta_1=flags.beta_1)
# optimizer_G = tf.optimizers.Adam(lr_v, beta_1=flags.beta_1)
# optimizer_D = tf.optimizers.Adam(lr_v, beta_1=flags.beta_1)
optimizer = tf.optimizers.Adam(lr_v, beta_1=flags.beta_1) # use only one optimier, if your GPU memory is large
use_ident = False
# KungFu: wrap the optimizers
if parallel:
from kungfu.tensorflow.optimizers import SynchronousSGDOptimizer, SynchronousAveragingOptimizer, PairAveragingOptimizer
if kungfu_option == 'sync-sgd':
opt_fn = SynchronousSGDOptimizer
elif kungfu_option == 'async-sgd':
opt_fn = PairAveragingOptimizer
elif kungfu_option == 'sma':
opt_fn = SynchronousAveragingOptimizer
else:
raise RuntimeError('Unknown distributed training optimizer.')
optimizer_Gab_Db = opt_fn(optimizer_Gab_Db)
optimizer_Gba_Da = opt_fn(optimizer_Gba_Da)
# Gab.load_weights(flags.model_dir + '/Gab.h5') # restore params?
# Gba.load_weights(flags.model_dir + '/Gba.h5')
# Da.load_weights(flags.model_dir + '/Da.h5')
# Db.load_weights(flags.model_dir + '/Db.h5')
# KungFu: shard the data
if parallel:
from kungfu import current_cluster_size, current_rank
data_A_shard = []
data_B_shard = []
for step, (image_A, image_B) in enumerate(zip(data_A, data_B)):
if step % current_cluster_size() == current_rank():
data_A_shard.append(image_A)
data_B_shard.append(image_B)
else:
data_A_shard = data_A
data_B_shard = data_B
@tf.function
def train_step(image_A, image_B):
fake_B = Gab(image_A)
fake_A = Gba(image_B)
cycle_A = Gba(fake_B)
cycle_B = Gab(fake_A)
if use_ident:
iden_A = Gba(image_A)
iden_B = Gab(image_B)
logits_fake_B = Db(fake_B) # TODO: missing image buffer (pool)
logits_real_B = Db(image_B)
logits_fake_A = Da(fake_A)
logits_real_A = Da(image_A)
# loss_Da = (tl.cost.mean_squared_error(logits_real_A, tf.ones_like(logits_real_A), is_mean=True) + \ # LSGAN
# tl.cost.mean_squared_error(logits_fake_A, tf.ones_like(logits_fake_A), is_mean=True)) / 2.
loss_Da = tf.reduce_mean(tf.math.squared_difference(logits_fake_A, tf.zeros_like(logits_fake_A))) + \
tf.reduce_mean(tf.math.squared_difference(logits_real_A, tf.ones_like(logits_real_A)))
# loss_Da = tl.cost.sigmoid_cross_entropy(logits_fake_A, tf.zeros_like(logits_fake_A)) + \
# tl.cost.sigmoid_cross_entropy(logits_real_A, tf.ones_like(logits_real_A))
# loss_Db = (tl.cost.mean_squared_error(logits_real_B, tf.ones_like(logits_real_B), is_mean=True) + \ # LSGAN
# tl.cost.mean_squared_error(logits_fake_B, tf.ones_like(logits_fake_B), is_mean=True)) / 2.
loss_Db = tf.reduce_mean(tf.math.squared_difference(logits_fake_B, tf.zeros_like(logits_fake_B))) + \
tf.reduce_mean(tf.math.squared_difference(logits_real_B, tf.ones_like(logits_real_B)))
# loss_Db = tl.cost.sigmoid_cross_entropy(logits_fake_B, tf.zeros_like(logits_fake_B)) + \
# tl.cost.sigmoid_cross_entropy(logits_real_B, tf.ones_like(logits_real_B))
# loss_Gab = tl.cost.mean_squared_error(logits_fake_B, tf.ones_like(logits_fake_B), is_mean=True) # LSGAN
loss_Gab = tf.reduce_mean(tf.math.squared_difference(logits_fake_B, tf.ones_like(logits_fake_B)))
# loss_Gab = tl.cost.sigmoid_cross_entropy(logits_fake_B, tf.ones_like(logits_fake_B))
# loss_Gba = tl.cost.mean_squared_error(logits_fake_A, tf.ones_like(logits_fake_A), is_mean=True) # LSGAN
loss_Gba = tf.reduce_mean(tf.math.squared_difference(logits_fake_A, tf.ones_like(logits_fake_A)))
# loss_Gba = tl.cost.sigmoid_cross_entropy(logits_fake_A, tf.ones_like(logits_fake_A))
# loss_cyc = 10 * (tl.cost.absolute_difference_error(image_A, cycle_A, is_mean=True) + \
# tl.cost.absolute_difference_error(image_B, cycle_B, is_mean=True))
loss_cyc = 10. * (tf.reduce_mean(tf.abs(image_A - cycle_A)) + tf.reduce_mean(tf.abs(image_B - cycle_B)))
if use_ident:
loss_iden = 5. * (tf.reduce_mean(tf.abs(image_A - iden_A)) + tf.reduce_mean(tf.abs(image_B - iden_B)))
else:
loss_iden = 0.
loss_G = loss_Gab + loss_Gba + loss_cyc + loss_iden
loss_D = loss_Da + loss_Db
return loss_G, loss_D, loss_Gab, loss_Gba, loss_cyc, loss_iden, loss_Da, loss_Db, loss_D+loss_G
for epoch in range(0, flags.n_epoch):
# reduce lr linearly after 100 epochs, from lr_init to 0
if epoch >= 100:
new_lr = flags.lr_init - flags.lr_init * (epoch - 100) / 100
lr_v.assign(lr_v, new_lr)
print("New learning rate %f" % new_lr)
# train 1 epoch
for step, (image_A, image_B) in enumerate(zip(data_A_shard, data_B_shard)):
if image_A.shape[0] != flags.batch_size or image_B.shape[0] != flags.batch_size : # if the remaining data in this epoch < batch_size
break
step_time = time.time()
with tf.GradientTape(persistent=True) as tape:
# print(image_A.numpy().max())
loss_G, loss_D, loss_Gab, loss_Gba, loss_cyc, loss_iden, loss_Da, loss_Db, loss_DG = train_step(image_A, image_B)
grad = tape.gradient(loss_DG, Gba.trainable_weights+Gab.trainable_weights+Da.trainable_weights+Db.trainable_weights)
optimizer.apply_gradients(zip(grad, Gba.trainable_weights+Gab.trainable_weights+Da.trainable_weights+Db.trainable_weights))
# grad = tape.gradient(loss_G, Gba.trainable_weights+Gab.trainable_weights)
# optimizer_G.apply_gradients(zip(grad, Gba.trainable_weights+Gab.trainable_weights))
# grad = tape.gradient(loss_D, Da.trainable_weights+Db.trainable_weights)
# optimizer_D.apply_gradients(zip(grad, Da.trainable_weights+Db.trainable_weights))
# del tape
print("Epoch[{}/{}] step[{}/{}] time:{:.3f} Gab:{:.3f} Gba:{:.3f} cyc:{:.3f} iden:{:.3f} Da:{:.3f} Db:{:.3f}".format(\
epoch, flags.n_epoch, step, n_step_per_epoch, time.time()-step_time, \
loss_Gab, loss_Gba, loss_cyc, loss_iden, loss_Da, loss_Db))
if parallel and step == 0:
# KungFu: broadcast is done after the first gradient step to ensure optimizer initialization.
from kungfu.tensorflow.initializer import broadcast_variables
# Broadcast model variables
broadcast_variables(Gab.trainable_weights)
broadcast_variables(Gba.trainable_weights)
broadcast_variables(Da.trainable_weights)
broadcast_variables(Db.trainable_weights)
# Broadcast optimizer variables
broadcast_variables(optimizer_Gab.variables())
broadcast_variables(optimizer_Gba.variables())
broadcast_variables(optimizer_Da.variables())
broadcast_variables(optimizer_Db.variables())
if parallel:
from kungfu import current_rank
is_chief = current_rank() == 0
else:
is_chief = True
# Let the chief worker to do visuliazation and checkpoints.
if is_chief:
# visualization
# outb = Gab(sample_A)
# outa = Gba(sample_B)
# tl.vis.save_images(outb.numpy(), [1, 5], flags.sample_dir+'/{}_a2b.png'.format(epoch))
# tl.vis.save_images(outa.numpy(), [1, 5], flags.sample_dir+'/{}_b2a.png'.format(epoch))
outb_list = [] # do it one by one in case your GPU memory is low
for i in range(len(sample_A)):
outb = Gab(sample_A[i][np.newaxis,:,:,:])
outb_list.append(outb.numpy()[0])
outa_list = []
for i in range(len(sample_B)):
outa = Gba(sample_B[i][np.newaxis,:,:,:])
outa_list.append(outa.numpy()[0])
tl.vis.save_images(np.asarray(outb_list), [1, 5], flags.sample_dir+'/{}_a2b.png'.format(epoch))
tl.vis.save_images(np.asarray(outa_list), [1, 5], flags.sample_dir+'/{}_b2a.png'.format(epoch))
# save models
if epoch % 5:
Gab.save_weights(flags.model_dir + '/Gab.h5')
Gba.save_weights(flags.model_dir + '/Gba.h5')
Da.save_weights(flags.model_dir + '/Da.h5')
Db.save_weights(flags.model_dir + '/Db.h5')
def eval():
Gab = models.get_G()
Gba = models.get_G()
Gab.eval()
Gba.eval()
Gab.load_weights(flags.model_dir + '/Gab.h5')
Gba.load_weights(flags.model_dir + '/Gba.h5')
for i, (x, _) in enumerate(tl.iterate.minibatches(inputs=im_test_A, targets=im_test_A, batch_size=5, shuffle=False)):
o = Gab(x)
tl.vis.save_images(x, [1, 5], flags.sample_dir+'/eval_{}_a.png'.format(i))
tl.vis.save_images(o.numpy(), [1, 5], flags.sample_dir+'/eval_{}_a2b.png'.format(i))
for i, (x, _) in enumerate(tl.iterate.minibatches(inputs=im_test_B, targets=im_test_B, batch_size=5, shuffle=False)):
o = Gba(x)
tl.vis.save_images(x, [1, 5], flags.sample_dir+'/eval_{}_b.png'.format(i))
tl.vis.save_images(o.numpy(), [1, 5], flags.sample_dir+'/eval_{}_b2a.png'.format(i))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='CycleGAN.')
parser.add_argument('--kf-optimizer',
type=str,
default='sma',
help='available options: sync-sgd, async-sgd, sma')
parser.add_argument('--parallel',
action='store_true',
default=False,
help='enable parallel training')
args = parser.parse_args()
train(args.parallel, args.kf_optimizer)
eval()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。