代码拉取完成,页面将自动刷新
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""Pretrain T5"""
from functools import partial
import torch
from megatron import (
get_args,
get_timers,
get_tokenizer,
print_rank_0
)
from megatron.core import mpu, tensor_parallel
from megatron.core.enums import ModelType
from megatron.core.models.T5 import T5Model
from megatron.training import pretrain
from megatron.utils import average_losses_across_data_parallel_group
from megatron.arguments import core_transformer_config_from_args
from megatron.core.datasets.blended_megatron_dataset_builder import BlendedMegatronDatasetBuilder
from megatron.core.datasets.t5_dataset import T5MaskedWordPieceDataset, T5MaskedWordPieceDatasetConfig
from megatron.core.models.T5.t5_spec import (get_t5_encoder_with_transformer_engine_block_spec,
get_t5_decoder_with_transformer_engine_block_spec,
get_t5_encoder_with_local_block_spec,
get_t5_decoder_with_local_block_spec)
from megatron.model import T5Model as NonCoreT5Model
"""
Pipeline parallelism for T5
(Caveat: currently, mcore T5 model has not supported pipeline-parallelism)
===========================
T5 is a model architecture with both encoder and decoder blocks.
Consequently, pipeline parallelism is implemented slightly differently
compared to architectures like GPT and BERT.
In particular, when pipeline_model_parallel_world_size > 1, each stage
either executes an encoder block or a decoder block. The
--pipeline-model-parallel-split-rank argument controls the rank at which
the split happens: all ranks lower than this argument execute the
encoder block, and all ranks equal to or higher than this argument value
execute the decoder block.
In the encoder section of the model, only one tensor is sent downstream:
the intermediate encoder_hidden_state. In the decoder section of the
model, two tensors are sent downstream in the forward pass: the fully
computed encoder_hidden_state, and the intermediate decoder_hidden_state.
In particular, these are the shapes of the tensors sent between
different workers:
If rank is in decoder section:
intermediate decoder_hidden_state (pre-transpose),
complete encoder_hidden_state (post-transpose).
If rank is at boundary between encoder and decoder sections:
complete encoder_hidden_state (post-transpose).
If rank is in encoder section:
intermediate encoder_hidden_state (pre-transpose).
Additionally, we have code in the backward_step function in schedules.py
to accumulate the encoder_hidden_state gradient across skip connections
(encoder_hidden_state fed in as input to each layer in the decoder).
"""
def model_provider(pre_process=True, post_process=True, add_encoder=True, add_decoder=True) -> T5Model:
"""Builds the model.
Args:
pre_process (bool, optional): Set to true if you need to compute embedings. Defaults to True.
post_process (bool, optional): Set to true if you need to want to compute output logits/loss. Defaults to True.
add_encoder (bool, optional): Defaults to True
add_decoder (bool, optional): Defaults to True
Returns:
T5Model: The returned T5 model
"""
args = get_args()
config = core_transformer_config_from_args(args)
if args.use_mcore_models:
if args.transformer_impl=="local":
en_block_spec = get_t5_encoder_with_local_block_spec(args.encoder_num_layers)
de_block_spec = get_t5_decoder_with_local_block_spec(args.decoder_num_layers)
elif args.transformer_impl=="transformer_engine":
en_block_spec = get_t5_encoder_with_transformer_engine_block_spec(args.encoder_num_layers)
de_block_spec = get_t5_decoder_with_transformer_engine_block_spec(args.decoder_num_layers)
print_rank_0('building T5 model ...')
model = T5Model(
config=config,
transformer_encoder_layer_spec=en_block_spec,
transformer_decoder_layer_spec=de_block_spec,
vocab_size=args.padded_vocab_size,
max_sequence_length=args.max_position_embeddings,
pre_process=pre_process,
post_process=post_process,
fp16_lm_cross_entropy=args.fp16_lm_cross_entropy,
parallel_output=True,
share_embeddings_and_output_weights=not args.untie_embeddings_and_output_weights,
position_embedding_type=args.position_embedding_type,
rotary_percent=args.rotary_percent
)
else:
model = NonCoreT5Model(config=config,
num_tokentypes=0,
parallel_output=True,
pre_process=pre_process,
post_process=post_process,
add_encoder=add_encoder,
add_decoder=add_decoder)
return model
def get_batch(data_iterator):
"""Build the batch."""
keys = ['text_enc', 'text_dec', 'labels', 'loss_mask',
'enc_mask', 'dec_mask', 'enc_dec_mask']
datatype = torch.int64
# Broadcast data.
if data_iterator is not None:
data = next(data_iterator)
else:
data = None
data_b = tensor_parallel.broadcast_data(keys, data, datatype)
# Unpack.
tokens_enc = data_b['text_enc'].long()
tokens_dec = data_b['text_dec'].long()
labels = data_b['labels'].long()
loss_mask = data_b['loss_mask'].float()
enc_mask = (data_b['enc_mask'] < 0.5)
dec_mask = (data_b['dec_mask'] < 0.5)
enc_dec_mask = (data_b['enc_dec_mask'] < 0.5)
return tokens_enc, tokens_dec, loss_mask, labels, \
enc_mask, dec_mask, enc_dec_mask
def loss_func(loss_mask: torch.Tensor, output_tensor: torch.Tensor):
"""Loss function.
Args:
loss_mask (torch.Tensor): Used to mask out some portions of the loss
output_tensor (torch.Tensor): The tensor with the losses
"""
lm_loss_ = output_tensor.float()
lm_loss = torch.sum(
lm_loss_.view(-1) * loss_mask.reshape(-1)) / loss_mask.sum()
loss = lm_loss
averaged_losses = average_losses_across_data_parallel_group([lm_loss])
return loss, {'lm loss': averaged_losses[0]}
def forward_step(data_iterator, model: T5Model):
"""Forward training step.
Args:
data_iterator : Input data iterator
model (T5Model): The T5 Model
"""
args = get_args()
timers = get_timers()
# Get the batch.
timers('batch generator', log_level=2).start()
tokens_enc, tokens_dec, loss_mask, lm_labels, enc_mask, dec_mask, enc_dec_mask \
= get_batch(data_iterator)
timers('batch generator').stop()
# Forward model lm_labels
output_tensor = model(tokens_enc,
tokens_dec,
enc_mask,
dec_mask,
enc_dec_mask,
lm_labels=lm_labels)
return output_tensor, partial(loss_func, loss_mask)
def train_valid_test_datasets_provider(train_val_test_num_samples: int):
"""Build the train test and validation datasets.
Args:
train_val_test_num_samples : A list containing the number of samples in train test and validation.
"""
args = get_args()
tokenizer = get_tokenizer()
config = T5MaskedWordPieceDatasetConfig(
is_built_on_rank=lambda: mpu.get_tensor_model_parallel_rank() == 0,
random_seed=args.seed,
sequence_length=args.encoder_seq_length,
sequence_length_decoder=args.decoder_seq_length,
blend=args.data_path,
blend_per_split=[
args.train_data_path,
args.valid_data_path,
args.test_data_path,
],
split=args.split,
path_to_cache=args.data_cache_path,
mock=False,
tokenizer=tokenizer,
masking_probability=args.mask_prob,
short_sequence_probability=args.short_seq_prob,
masking_max_ngram=10,
masking_do_full_word=True,
masking_do_permutation=False,
masking_use_longer_ngrams=False,
masking_use_geometric_distribution=True,
)
print_rank_0('> building train, validation, and test datasets '
'for T5 ...')
train_ds, valid_ds, test_ds = BlendedMegatronDatasetBuilder(
T5MaskedWordPieceDataset,
train_val_test_num_samples,
config,
).build()
print_rank_0("> finished creating T5 datasets ...")
return train_ds, valid_ds, test_ds
if __name__ == "__main__":
# Temporary for transition to core datasets
train_valid_test_datasets_provider.is_distributed = True
pretrain(train_valid_test_datasets_provider, model_provider, ModelType.encoder_and_decoder,
forward_step, args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。