代码拉取完成,页面将自动刷新
# -*- coding: utf-8 -*-
# 整个模型训练测试验证代码,并保存最优模型,打印测试数据
import numpy as np
import scipy.io as sio
from keras.utils.np_utils import to_categorical
from keras.optimizers import Adam, SGD, Adadelta, RMSprop, Nadam
import keras.callbacks as kcallbacks
import time
import collections
from sklearn import metrics, preprocessing
from Utils import zeroPadding, normalization, doPCA, modelStatsRecord, averageAccuracy, deformable_se_sep_SA,hybrid_in,ssrn_SS_IN,densenet_IN,cnn3_3D_IN
import matplotlib.pyplot as plt
import keras
# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# 产生新数据集的过程
# indexToAssignment(train_indices, whole_data.shape[0], whole_data.shape[result], PATCH_LENGTH)
def indexToAssignment(index_, Row, Col, pad_length):
new_assign = {}
for counter, value in enumerate(index_):
# counter 是从0开始计数的,是具体的值
assign_0 = value // Col + pad_length
assign_1 = value % Col + pad_length
new_assign[counter] = [assign_0, assign_1]
return new_assign
def assignmentToIndex(assign_0, assign_1, Row, Col):
new_index = assign_0 * Col + assign_1
return new_index
def selectNeighboringPatch(matrix, pos_row, pos_col, ex_len):
selected_rows = matrix[range(pos_row - ex_len, pos_row + ex_len + 1), :]
selected_patch = selected_rows[:, range(pos_col - ex_len, pos_col + ex_len + 1)]
return selected_patch
# divide dataset into train and test datasets
def sampling(proptionVal, groundTruth):
labels_loc = {}
train = {}
test = {}
m = max(groundTruth)
print(m)
# 16
# 16类,对每一类样本要先打乱,然后再按比例分配,得到一个字典,因为上面是枚举,所以样本和标签的对应
for i in range(m):
indices = [j for j, x in enumerate(groundTruth.ravel().tolist()) if x == i + 1]
# print(indices)
# 每一类的样本数
np.random.shuffle(indices)
labels_loc[i] = indices
nb_val = int(proptionVal * len(indices))
train[i] = indices[:-nb_val]
test[i] = indices[-nb_val:]
# 将所有的训练样本存到train集合中,将所有的测试样本存到test集合中
train_indices = []
test_indices = []
for i in range(m):
train_indices += train[i]
test_indices += test[i]
np.random.shuffle(train_indices)
np.random.shuffle(test_indices)
print(len(test_indices))
# 27061
print(len(train_indices))
# 27068
return train_indices, test_indices
# 写一个LossHistory类,保存loss和acc
class LossHistory(keras.callbacks.Callback):
def on_train_begin(self, logs={}):
self.losses = {'batch': [], 'epoch': []}
self.accuracy = {'batch': [], 'epoch': []}
self.val_loss = {'batch': [], 'epoch': []}
self.val_acc = {'batch': [], 'epoch': []}
def on_batch_end(self, batch, logs={}):
self.losses['batch'].append(logs.get('loss'))
self.accuracy['batch'].append(logs.get('acc'))
self.val_loss['batch'].append(logs.get('val_loss'))
self.val_acc['batch'].append(logs.get('val_acc'))
def on_epoch_end(self, batch, logs={}):
self.losses['epoch'].append(logs.get('loss'))
self.accuracy['epoch'].append(logs.get('acc'))
self.val_loss['epoch'].append(logs.get('val_loss'))
self.val_acc['epoch'].append(logs.get('val_acc'))
def loss_plot(self, loss_type):
iters = range(len(self.losses[loss_type]))
plt.figure()
# acc
plt.plot(iters, self.accuracy[loss_type], 'r', label='train acc')
# loss
plt.plot(iters, self.losses[loss_type], 'g', label='train loss')
if loss_type == 'epoch':
# val_acc
plt.plot(iters, self.val_acc[loss_type], 'b', label='val acc')
# val_loss
plt.plot(iters, self.val_loss[loss_type], 'k', label='val loss')
plt.grid(True)
plt.xlabel(loss_type)
plt.ylabel('acc-loss')
plt.legend(loc="upper right")
plt.show()
# 调用设计好的模型
def model_MSDNet():
model_dense =cnn3_3D_IN .ResnetBuilder.build_resnet_8((1, img_rows, img_cols, img_channels),
nb_classes)
RMS = RMSprop(lr=0.0003)
# Let's train the model using RMSprop
model_dense.compile(loss='categorical_crossentropy', optimizer=RMS, metrics=['accuracy'])
return model_dense
# 加载数据
# 修正的Indian pines数据集
mat_data = sio.loadmat('F:/transfer code/Tensorflow Learning/SKNet/datasets/Salinas/Salinas_corrected.mat')
data_IN = mat_data['salinas_corrected']
# 标签数据
mat_gt = sio.loadmat('F:/transfer code/Tensorflow Learning/SKNet/datasets/Salinas/Salinas_gt.mat')
gt_IN = mat_gt['salinas_gt']
# print('data_IN:',data_IN)
print(data_IN.shape)
# (512,217,204)
print(gt_IN.shape)
# (512,217)
# new_gt_IN = set_zeros(gt_IN, [result,4,7,9,13,15,16])
new_gt_IN = gt_IN
batch_size = 16
nb_classes = 16
nb_epoch = 200 # 400
img_rows, img_cols = 17, 17 # 27, 27
patience = 200
INPUT_DIMENSION_CONV = 204
INPUT_DIMENSION = 204
# 20%:10%:70% data for training, validation and testing
TOTAL_SIZE = 54129
VAL_SIZE = 5413
TRAIN_SIZE = 21660
TEST_SIZE = TOTAL_SIZE - TRAIN_SIZE
VALIDATION_SPLIT = 0.6 # 20% for trainnig and 80% for validation and testing
# 0.9 5212
# 0.8 10833
# 0.7 16246
# 0.6 21660
# 0.5 27068
img_channels = 204
PATCH_LENGTH = 8 # Patch_size (13*2+result)*(13*2+result)
print(data_IN.shape[:2])
# (512,217)
print(np.prod(data_IN.shape[:2]))
# 111104
print(data_IN.shape[2:])
# (204,)
print(np.prod(data_IN.shape[2:]))
# 204
print(np.prod(new_gt_IN.shape[:2]))
# 111104
# 对数据进行reshape处理之后,进行scale操作
data = data_IN.reshape(np.prod(data_IN.shape[:2]), np.prod(data_IN.shape[2:]))
gt = new_gt_IN.reshape(np.prod(new_gt_IN.shape[:2]), )
# 标准化操作,即将所有数据沿行沿列均归一化道0-1之间
data = preprocessing.scale(data)
print(data.shape)
# (111104, 204)
# 对数据边缘进行填充操作,有点类似之前的镜像操作
data_ = data.reshape(data_IN.shape[0], data_IN.shape[1], data_IN.shape[2])
whole_data = data_
padded_data = zeroPadding.zeroPadding_3D(whole_data, PATCH_LENGTH)
print(padded_data.shape)
# (530, 235, 204)
# 因为选择的是7*7的滑动窗口,145*145,145/7余5,也就是说有5个像素点扫描不到,所有在长宽每边个填充3,也就是6,这样的话
# 就可以将所有像素点扫描到
ITER = 1
CATEGORY = 16
train_data = np.zeros((TRAIN_SIZE, 2 * PATCH_LENGTH + 1, 2 * PATCH_LENGTH + 1, INPUT_DIMENSION_CONV))
print(train_data.shape)
# (27068, 19, 19, 204)
test_data = np.zeros((TEST_SIZE, 2 * PATCH_LENGTH + 1, 2 * PATCH_LENGTH + 1, INPUT_DIMENSION_CONV))
print(test_data.shape)
# (25052, 19, 19, 200)
# 评价指标
KAPPA_3D_MSDNet = []
OA_3D_MSDNet = []
AA_3D_MSDNet = []
TRAINING_TIME_3D_MSDNet = []
TESTING_TIME_3D_MSDNet = []
ELEMENT_ACC_3D_MSDNet = np.zeros((ITER, CATEGORY))
# seeds = [1220, 1221, 1222, 1223, 1224, 1225, 1226, 1227, 1228, 1229]
seeds = [1334]
for index_iter in range(ITER):
print("# %d Iteration" % (index_iter + 1))
# # result Iteration
# save the best validated model
best_weights_MSDNet_path = 'F:/transfer code/Tensorflow Learning/SKNet/models-sa-3dcnn-17-415/sa_best_3D_MSDNet_' + str(
index_iter + 1) + '.hdf5'
# 通过sampling函数拿到测试和训练样本
np.random.seed(seeds[index_iter])
train_indices, test_indices = sampling(VALIDATION_SPLIT, gt)
print('56' * 10, len(train_indices), len(test_indices))
# train_indices 27068 test_indices 27061
# gt本身是标签类,从标签类中取出相应的标签 -result,转成one-hot形式
y_train = gt[train_indices] - 1
y_train = to_categorical(np.asarray(y_train))
y_test = gt[test_indices] - 1
y_test = to_categorical(np.asarray(y_test))
# 这个地方论文也解释了一下,是新建了一个以采集中心为主的新数据集,还是对元数据集进行了一些更改
train_assign = indexToAssignment(train_indices, whole_data.shape[0], whole_data.shape[1], PATCH_LENGTH)
for i in range(len(train_assign)):
train_data[i] = selectNeighboringPatch(padded_data, train_assign[i][0], train_assign[i][1], PATCH_LENGTH)
test_assign = indexToAssignment(test_indices, whole_data.shape[0], whole_data.shape[1], PATCH_LENGTH)
for i in range(len(test_assign)):
test_data[i] = selectNeighboringPatch(padded_data, test_assign[i][0], test_assign[i][1], PATCH_LENGTH)
# 拿到了新的数据集进行reshpae之后,数据处理就结束了
x_train = train_data.reshape(train_data.shape[0], train_data.shape[1], train_data.shape[2], INPUT_DIMENSION_CONV)
x_test_all = test_data.reshape(test_data.shape[0], test_data.shape[1], test_data.shape[2], INPUT_DIMENSION_CONV)
# 在测试数据集上进行验证和测试的划分
x_val = x_test_all[-VAL_SIZE:]
y_val = y_test[-VAL_SIZE:]
x_test = x_test_all[:-VAL_SIZE]
y_test = y_test[:-VAL_SIZE]
model_MSDNet = model_MSDNet()
# 创建一个实例history
history = LossHistory()
# monitor:监视数据接口,此处是val_loss,patience是在多少步可以容忍没有提高变化
earlyStopping6 = kcallbacks.EarlyStopping(monitor='val_loss', patience=patience, verbose=1, mode='auto')
# 用户每次epoch最后都会保存模型,如果save_best_only=True,那么最近验证误差最后的数据将会被保存下来
saveBestModel6 = kcallbacks.ModelCheckpoint(best_weights_MSDNet_path, monitor='val_loss', verbose=1,
save_best_only=True,
mode='auto')
# 训练和验证
tic6 = time.clock()
print(x_train.shape, x_test.shape)
# (2055,7,7,200) (7169,7,7,200)
history_3d_MSDNet = model_MSDNet.fit(
x_train.reshape(x_train.shape[0], x_train.shape[1], x_train.shape[2], x_train.shape[3], 1), y_train,
validation_data=(x_val.reshape(x_val.shape[0], x_val.shape[1], x_val.shape[2], x_val.shape[3], 1), y_val),
batch_size=batch_size,
nb_epoch=nb_epoch, shuffle=True, callbacks=[earlyStopping6, saveBestModel6, history])
toc6 = time.clock()
# 测试
tic7 = time.clock()
loss_and_metrics = model_MSDNet.evaluate(
x_test.reshape(x_test.shape[0], x_test.shape[1], x_test.shape[2], x_test.shape[3], 1), y_test,
batch_size=batch_size)
toc7 = time.clock()
print('3D MSDNet Time: ', toc6 - tic6)
print('3D MSDNet Test time:', toc7 - tic7)
print('3D MSDNet Test score:', loss_and_metrics[0])
print('3D MSDNet Test accuracy:', loss_and_metrics[1])
print(history_3d_MSDNet.history.keys())
# 预测
pred_test = model_MSDNet.predict(
x_test.reshape(x_test.shape[0], x_test.shape[1], x_test.shape[2], x_test.shape[3], 1)).argmax(axis=1)
# 跟踪值出现的次数
collections.Counter(pred_test)
gt_test = gt[test_indices] - 1
# print(len(gt_test))
# 8194
# 这是测试集,验证和测试还没有分开
overall_acc = metrics.accuracy_score(pred_test, gt_test[:-VAL_SIZE])
confusion_matrix = metrics.confusion_matrix(pred_test, gt_test[:-VAL_SIZE])
each_acc, average_acc = averageAccuracy.AA_andEachClassAccuracy(confusion_matrix)
kappa = metrics.cohen_kappa_score(pred_test, gt_test[:-VAL_SIZE])
KAPPA_3D_MSDNet.append(kappa)
OA_3D_MSDNet.append(overall_acc)
AA_3D_MSDNet.append(average_acc)
TRAINING_TIME_3D_MSDNet.append(toc6 - tic6)
TESTING_TIME_3D_MSDNet.append(toc7 - tic7)
ELEMENT_ACC_3D_MSDNet[index_iter, :] = each_acc
# 绘制acc-loss曲线
history.loss_plot('epoch')
print("3D MSDNet finished.")
print("# %d Iteration" % (index_iter + 1))
# 自定义输出类
modelStatsRecord.outputStats(KAPPA_3D_MSDNet, OA_3D_MSDNet, AA_3D_MSDNet, ELEMENT_ACC_3D_MSDNet,
TRAINING_TIME_3D_MSDNet, TESTING_TIME_3D_MSDNet,
history_3d_MSDNet, loss_and_metrics, CATEGORY,
'F:/transfer code/Tensorflow Learning/SKNet/records-sa-3dcnn-17-415/IN_train_3D.txt',
'F:/transfer code/Tensorflow Learning/SKNet/records-sa-3dcnn-17-415/IN_train_3D_element.txt')
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。