代码拉取完成,页面将自动刷新
import argparse
import numpy as np
import torch
import utils
import os
from model import RENet
from global_model import RENet_global
import pickle
def test(args):
# load data
num_nodes, num_rels = utils.get_total_number('./data/' + args.dataset, 'stat.txt')
if args.dataset == 'icews_know':
train_data, train_times = utils.load_quadruples('./data/' + args.dataset, 'train.txt')
valid_data, valid_times = utils.load_quadruples('./data/' + args.dataset, 'test.txt')
test_data, test_times = utils.load_quadruples('./data/' + args.dataset, 'test.txt')
total_data, total_times = utils.load_quadruples('./data/' + args.dataset, 'train.txt', 'test.txt')
else:
train_data, train_times = utils.load_quadruples('./data/' + args.dataset, 'train.txt')
valid_data, valid_times = utils.load_quadruples('./data/' + args.dataset, 'valid.txt')
test_data, test_times = utils.load_quadruples('./data/' + args.dataset, 'test.txt')
total_data, total_times = utils.load_quadruples('./data/' + args.dataset, 'train.txt', 'valid.txt', 'test.txt')
# check cuda
use_cuda = args.gpu >= 0 and torch.cuda.is_available()
if use_cuda:
torch.cuda.set_device(args.gpu)
torch.cuda.manual_seed_all(999)
model_state_file = 'models/' + args.dataset + '/rgcn.pth'
model_graph_file = 'models/' + args.dataset + '/rgcn_graph.pth'
model_state_global_file2 = 'models/' + args.dataset + '/max' + str(args.maxpool) + 'rgcn_global2.pth'
model = RENet(num_nodes,
args.n_hidden,
num_rels,
model=args.model,
seq_len=args.seq_len,
num_k=args.num_k)
global_model = RENet_global(num_nodes,
args.n_hidden,
num_rels,
model=args.model,
seq_len=args.seq_len,
num_k=args.num_k, maxpool=args.maxpool)
if use_cuda:
model.cuda()
global_model.cuda()
with open('data/' + args.dataset+'/test_history_sub.txt', 'rb') as f:
s_history_test_data = pickle.load(f)
with open('data/' + args.dataset+'/test_history_ob.txt', 'rb') as f:
o_history_test_data = pickle.load(f)
s_history_test = s_history_test_data[0]
s_history_test_t = s_history_test_data[1]
o_history_test = o_history_test_data[0]
o_history_test_t = o_history_test_data[1]
print("\nstart testing:")
checkpoint = torch.load(model_state_file, map_location=lambda storage, loc: storage)
model.load_state_dict(checkpoint['state_dict'])
model.s_hist_test = checkpoint['s_hist']
model.s_his_cache = checkpoint['s_cache']
model.o_hist_test = checkpoint['o_hist']
model.o_his_cache = checkpoint['o_cache']
model.latest_time = checkpoint['latest_time']
if args.dataset == "icews_know":
model.latest_time = torch.LongTensor([4344])[0]
model.global_emb = checkpoint['global_emb']
model.s_hist_test_t = checkpoint['s_hist_t']
model.s_his_cache_t = checkpoint['s_cache_t']
model.o_hist_test_t = checkpoint['o_hist_t']
model.o_his_cache_t = checkpoint['o_cache_t']
with open(model_graph_file, 'rb') as f:
model.graph_dict = pickle.load(f)
checkpoint_global = torch.load(model_state_global_file2, map_location=lambda storage, loc: storage)
global_model.load_state_dict(checkpoint_global['state_dict'])
print("Using best epoch: {}".format(checkpoint['epoch']))
total_data = torch.from_numpy(total_data)
test_data = torch.from_numpy(test_data)
model.eval()
global_model.eval()
total_loss = 0
total_ranks = np.array([])
total_ranks_filter = np.array([])
ranks = []
for ee in range(num_nodes):
while len(model.s_hist_test[ee]) > args.seq_len:
model.s_hist_test[ee].pop(0)
model.s_hist_test_t[ee].pop(0)
while len(model.o_hist_test[ee]) > args.seq_len:
model.o_hist_test[ee].pop(0)
model.o_hist_test_t[ee].pop(0)
if use_cuda:
total_data = total_data.cuda()
latest_time = test_times[0]
for i in range(len(test_data)):
batch_data = test_data[i]
s_hist = s_history_test[i]
o_hist = o_history_test[i]
s_hist_t = s_history_test_t[i]
o_hist_t = o_history_test_t[i]
if latest_time != batch_data[3]:
ranks.append(total_ranks_filter)
latest_time = batch_data[3]
total_ranks_filter = np.array([])
if use_cuda:
batch_data = batch_data.cuda()
with torch.no_grad():
# Filtered metric
if args.raw:
ranks_filter, loss = model.evaluate(batch_data, (s_hist, s_hist_t), (o_hist, o_hist_t),
global_model)
else:
ranks_filter, loss = model.evaluate_filter(batch_data, (s_hist, s_hist_t), (o_hist, o_hist_t),
global_model, total_data)
total_ranks_filter = np.concatenate((total_ranks_filter, ranks_filter))
total_loss += loss.item()
ranks.append(total_ranks_filter)
for rank in ranks:
total_ranks = np.concatenate((total_ranks,rank))
mrr = np.mean(1.0 / total_ranks)
mr = np.mean(total_ranks)
hits = []
for hit in [1,3,10]:
avg_count = np.mean((total_ranks <= hit))
hits.append(avg_count)
print("Hits (filtered) @ {}: {:.6f}".format(hit, avg_count))
print("MRR (filtered): {:.6f}".format(mrr))
print("MR (filtered): {:.6f}".format(mr))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='RENet')
parser.add_argument("-d", "--dataset", type=str, default='ICEWS18',
help="dataset to use")
parser.add_argument("--gpu", type=int, default=0,
help="gpu")
parser.add_argument("--model", type=int, default=3)
parser.add_argument("--n-hidden", type=int, default=200,
help="number of hidden units")
parser.add_argument("--seq-len", type=int, default=10)
parser.add_argument("--num-k", type=int, default=1000,
help="cuttoff position")
parser.add_argument("--maxpool", type=int, default=1)
parser.add_argument('--raw', action='store_true')
args = parser.parse_args()
test(args)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。