1 Star 0 Fork 250

kevinfuture/股票分析

forked from wking/股票分析 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
xuangu.py 11.40 KB
一键复制 编辑 原始数据 按行查看 历史
"""
选股多线程版本文件。导入数据——执行策略——显示结果
为保证和通达信选股一致,需使用前复权数据
"""
import os
import sys
import time
import pandas as pd
from multiprocessing import Pool, RLock, freeze_support
from rich import print
from tqdm import tqdm
import CeLue # 个人策略文件,不分享
import func
import user_config as ucfg
# 配置部分
start_date = ''
end_date = ''
# 变量定义
tdxpath = ucfg.tdx['tdx_path']
csvdaypath = ucfg.tdx['pickle']
已选出股票列表 = [] # 策略选出的股票
要剔除的通达信概念 = ["ST板块", ] # list类型。通达信软件中查看“概念板块”。
要剔除的通达信行业 = ["T1002", ] # list类型。记事本打开 通达信目录\incon.dat,查看#TDXNHY标签的行业代码。
starttime_str = time.strftime("%H:%M:%S", time.localtime())
starttime = time.time()
starttime_tick = time.time()
def make_stocklist():
# 要进行策略的股票列表筛选
stocklist = [i[:-4] for i in os.listdir(ucfg.tdx['csv_lday'])] # 去文件名里的.csv,生成纯股票代码list
print(f'生成股票列表, 共 {len(stocklist)} 只股票')
print(f'剔除通达信概念股票: {要剔除的通达信概念}')
tmplist = []
df = func.get_TDX_blockfilecontent("block_gn.dat")
# 获取df中blockname列的值是ST板块的行,对应code列的值,转换为list。用filter函数与stocklist过滤,得出不包括ST股票的对象,最后转为list
for i in 要剔除的通达信概念:
tmplist = tmplist + df.loc[df['blockname'] == i]['code'].tolist()
stocklist = list(filter(lambda i: i not in tmplist, stocklist))
print(f'剔除通达信行业股票: {要剔除的通达信行业}')
tmplist = []
df = pd.read_csv(ucfg.tdx['tdx_path'] + os.sep + 'T0002' + os.sep + 'hq_cache' + os.sep + "tdxhy.cfg",
sep='|', header=None, dtype='object')
for i in 要剔除的通达信行业:
tmplist = tmplist + df.loc[df[2] == i][1].tolist()
stocklist = list(filter(lambda i: i not in tmplist, stocklist))
print("剔除科创板股票")
tmplist = []
for stockcode in stocklist:
if stockcode[:2] != '68':
tmplist.append(stockcode)
stocklist = tmplist
return stocklist
def load_dict_stock(stocklist):
dicttemp = {}
starttime_tick = time.time()
tq = tqdm(stocklist)
for stockcode in tq:
tq.set_description(stockcode)
pklfile = csvdaypath + os.sep + stockcode + '.pkl'
# dict[stockcode] = pd.read_csv(csvfile, encoding='gbk', index_col=None, dtype={'code': str})
dicttemp[stockcode] = pd.read_pickle(pklfile)
print(f'载入完成 用时 {(time.time() - starttime_tick):.2f} 秒')
return dicttemp
def run_celue1(stocklist, df_today, tqdm_position=None):
if 'single' in sys.argv[1:]:
tq = tqdm(stocklist[:])
else:
tq = tqdm(stocklist[:], leave=False, position=tqdm_position)
for stockcode in tq:
tq.set_description(stockcode)
pklfile = csvdaypath + os.sep + stockcode + '.pkl'
df_stock = pd.read_pickle(pklfile)
if df_today is not None: # 更新当前最新行情,否则用昨天的数据
df_stock = func.update_stockquote(stockcode, df_stock, df_today)
df_stock['date'] = pd.to_datetime(df_stock['date'], format='%Y-%m-%d') # 转为时间格式
df_stock.set_index('date', drop=False, inplace=True) # 时间为索引。方便与另外复权的DF表对齐合并
celue1 = CeLue.策略1(df_stock, start_date=start_date, end_date=end_date, mode='fast')
if not celue1:
stocklist.remove(stockcode)
return stocklist
def run_celue2(stocklist, HS300_信号, df_gbbq, df_today, tqdm_position=None):
if 'single' in sys.argv[1:]:
tq = tqdm(stocklist[:])
else:
tq = tqdm(stocklist[:], leave=False, position=tqdm_position)
for stockcode in tq:
tq.set_description(stockcode)
pklfile = csvdaypath + os.sep + stockcode + '.pkl'
df_stock = pd.read_pickle(pklfile)
df_stock['date'] = pd.to_datetime(df_stock['date'], format='%Y-%m-%d') # 转为时间格式
df_stock.set_index('date', drop=False, inplace=True) # 时间为索引。方便与另外复权的DF表对齐合并
if '09:00:00' < time.strftime("%H:%M:%S", time.localtime()) < '16:00:00' \
and 0 <= time.localtime(time.time()).tm_wday <= 4:
df_today_code = df_today.loc[df_today['code'] == stockcode]
df_stock = func.update_stockquote(stockcode, df_stock, df_today_code)
# 判断今天是否在该股的权息日内。如果是,需要重新前复权
now_date = pd.to_datetime(time.strftime("%Y-%m-%d", time.localtime()))
if now_date in df_gbbq.loc[df_gbbq['code'] == stockcode]['权息日'].to_list():
cw_dict = func.readall_local_cwfile()
df_stock = func.make_fq(stockcode, df_stock, df_gbbq, cw_dict)
celue2 = CeLue.策略2(df_stock, HS300_信号, start_date=start_date, end_date=end_date).iat[-1]
if not celue2:
stocklist.remove(stockcode)
return stocklist
# 主程序开始
if __name__ == '__main__':
if 'single' in sys.argv[1:]:
print(f'检测到参数 single, 单进程执行')
else:
print(f'附带命令行参数 single 单进程执行(默认多进程)')
stocklist = make_stocklist()
print(f'共 {len(stocklist)} 只候选股票')
# 由于多进程时df_dict字典占用超多内存资源,导致多进程效率还不如单进程。因此多进程模式改用函数内部读单独股票pkl文件的办法
# print("开始载入日线文件到内存")
# df_dict = load_dict_stock(stocklist)
df_gbbq = pd.read_csv(ucfg.tdx['csv_gbbq'] + '/gbbq.csv', encoding='gbk', dtype={'code': str})
# 策略部分
# 先判断今天是否买入
print('今日HS300行情判断')
df_hs300 = pd.read_csv(ucfg.tdx['csv_index'] + '/000300.csv', index_col=None, encoding='gbk', dtype={'code': str})
df_hs300['date'] = pd.to_datetime(df_hs300['date'], format='%Y-%m-%d') # 转为时间格式
df_hs300.set_index('date', drop=False, inplace=True) # 时间为索引。方便与另外复权的DF表对齐合并
if '09:00:00' < time.strftime("%H:%M:%S", time.localtime()) < '16:00:00':
df_today = func.get_tdx_lastestquote((1, '000300'))
df_hs300 = func.update_stockquote('000300', df_hs300, df_today)
del df_today
HS300_信号 = CeLue.策略HS300(df_hs300)
if HS300_信号.iat[-1]:
print('[red]今日HS300满足买入条件,执行买入操作[/red]')
else:
print('[green]今日HS300不满足买入条件,仍然选股,但不执行买入操作[/green]')
HS300_信号.loc[:] = True # 强制全部设置为True出选股结果
# 周一到周五,9点到16点之间,获取在线行情。其他时间不是交易日,默认为离线数据已更新到最新
df_today_tmppath = ucfg.tdx['csv_gbbq'] + '/df_today.pkl'
if '09:00:00' < time.strftime("%H:%M:%S", time.localtime()) < '16:00:00' \
and 0 <= time.localtime(time.time()).tm_wday <= 4:
# 获取当前最新行情,临时保存到本地,防止多次调用被服务器封IP。
print(f'现在是交易时段,需要获取股票实时行情')
if os.path.exists(df_today_tmppath):
if round(time.time() - os.path.getmtime(df_today_tmppath)) < 600: # 据创建时间小于10分钟读取本地文件
print(f'检测到本地临时最新行情文件,读取并合并股票数据')
df_today = pd.read_pickle(df_today_tmppath)
else:
df_today = func.get_tdx_lastestquote(stocklist)
df_today.to_pickle(df_today_tmppath, compression=None)
else:
df_today = func.get_tdx_lastestquote(stocklist)
df_today.to_pickle(df_today_tmppath, compression=None)
else:
try:
os.remove(df_today_tmppath)
except FileNotFoundError:
pass
df_today = None
print(f'开始执行策略1(mode=fast)')
starttime_tick = time.time()
if 'single' in sys.argv[1:]:
stocklist = run_celue1(stocklist, df_today)
else:
t_num = os.cpu_count() - 2 # 进程数 读取CPU逻辑处理器个数
freeze_support() # for Windows support
tqdm.set_lock(RLock()) # for managing output contention
p = Pool(processes=t_num, initializer=tqdm.set_lock, initargs=(tqdm.get_lock(),))
pool_result = [] # 存放pool池的返回对象列表
for i in range(0, t_num):
div = int(len(stocklist) / t_num)
mod = len(stocklist) % t_num
if i + 1 != t_num:
# print(i, i * div, (i + 1) * div)
pool_result.append(p.apply_async(run_celue1, args=(stocklist[i * div:(i + 1) * div], df_today, i,)))
else:
# print(i, i * div, (i + 1) * div + mod)
pool_result.append(p.apply_async(run_celue1, args=(stocklist[i * div:(i + 1) * div + mod], df_today, i,)))
# print('Waiting for all subprocesses done...')
p.close()
p.join()
stocklist = []
# 读取pool的返回对象列表。i.get()是读取方法。拼接每个子进程返回的df
for i in pool_result:
stocklist = stocklist + i.get()
print(f'策略1执行完毕,已选出 {len(stocklist):>d} 只股票 用时 {(time.time() - starttime_tick):>.2f} 秒')
# print(stocklist)
print(f'开始执行策略2')
# 如果没有df_today
if '09:00:00' < time.strftime("%H:%M:%S", time.localtime()) < '16:00:00' and 'df_today' not in dir():
df_today = func.get_tdx_lastestquote(stocklist) # 获取当前最新行情
starttime_tick = time.time()
if 'single' in sys.argv[1:]:
stocklist = run_celue2(stocklist, HS300_信号, df_gbbq, df_today)
else:
# 由于df_dict字典占用超多内存资源,导致多进程效率还不如单进程
t_num = os.cpu_count() - 2 # 进程数 读取CPU逻辑处理器个数
freeze_support() # for Windows support
tqdm.set_lock(RLock()) # for managing output contention
p = Pool(processes=t_num, initializer=tqdm.set_lock, initargs=(tqdm.get_lock(),))
pool_result = [] # 存放pool池的返回对象列表
for i in range(0, t_num):
div = int(len(stocklist) / t_num)
mod = len(stocklist) % t_num
if i + 1 != t_num:
# print(i, i * div, (i + 1) * div)
pool_result.append(p.apply_async(run_celue2, args=(stocklist[i * div:(i + 1) * div], HS300_信号, df_gbbq, df_today, i,)))
else:
# print(i, i * div, (i + 1) * div + mod)
pool_result.append(p.apply_async(run_celue2, args=(stocklist[i * div:(i + 1) * div + mod], HS300_信号, df_gbbq, df_today, i,)))
# print('Waiting for all subprocesses done...')
p.close()
p.join()
stocklist = []
# 读取pool的返回对象列表。i.get()是读取方法。拼接每个子进程返回的df
for i in pool_result:
stocklist = stocklist + i.get()
print(f'策略2执行完毕,已选出 {len(stocklist):>d} 只股票 用时 {(time.time() - starttime_tick):>.2f} 秒')
# 结果
print(f'全部完成 共用时 {(time.time() - starttime):>.2f} 秒 已选出 {len(stocklist)} 只股票:')
print(stocklist)
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/kevinfuture/stock-analysis.git
git@gitee.com:kevinfuture/stock-analysis.git
kevinfuture
stock-analysis
股票分析
master

搜索帮助