代码拉取完成,页面将自动刷新
from collections import defaultdict
import config
import torch
import torch.utils.data
import datetime
from helper import Helper
import random
import logging
from torchvision import datasets, transforms
import numpy as np
from models.loan_model import LoanNet
import csv
import os
import pandas as pd
import torch
import torch.utils.data as data
from sklearn.model_selection import train_test_split
import os
import yaml
logger = logging.getLogger("logger")
POISONED_PARTICIPANT_POS = 0
class StateHelper():
def __init__(self, params):
self.params= params
self.name=""
def load_data(self, filename='./data/loan/loan_IA.csv'):
logger.info('Loading data')
self.all_dataset = LoanDataset(filename)
def get_trainloader(self):
self.all_dataset.SetIsTrain(True)
train_loader = torch.utils.data.DataLoader(self.all_dataset, batch_size=self.params['batch_size'],
shuffle=True)
return train_loader
def get_testloader(self):
self.all_dataset.SetIsTrain(False)
test_loader = torch.utils.data.DataLoader(self.all_dataset,
batch_size=self.params['test_batch_size'],
shuffle=False)
return test_loader
def get_poison_trainloader(self):
self.all_dataset.SetIsTrain(True)
return torch.utils.data.DataLoader(self.all_dataset,
batch_size=self.params['batch_size'],
shuffle=True)
def get_poison_testloader(self):
self.all_dataset.SetIsTrain(False)
return torch.utils.data.DataLoader(self.all_dataset,
batch_size=self.params['test_batch_size'],
shuffle=False)
def get_batch(self, train_data, bptt, evaluation=False):
data, target = bptt
data = data.float().to(config.device)
target = target.long().to(config.device)
if evaluation:
data.requires_grad_(False)
target.requires_grad_(False)
return data, target
class LoanHelper(Helper):
def poison(self):
return
def create_model(self):
local_model = LoanNet(name='Local',
created_time=self.params['current_time'])
local_model=local_model.to(config.device)
target_model = LoanNet(name='Target',
created_time=self.params['current_time'])
target_model=target_model.to(config.device)
if self.params['resumed_model']:
if torch.cuda.is_available():
loaded_params = torch.load(f"saved_models/{self.params['resumed_model_name']}")
else:
loaded_params = torch.load(f"saved_models/{self.params['resumed_model_name']}",
map_location='cpu')
target_model.load_state_dict(loaded_params['state_dict'])
self.start_epoch = loaded_params['epoch']+1
self.params['lr'] = loaded_params.get('lr', self.params['lr'])
logger.info(f"Loaded parameters from saved model: LR is"
f" {self.params['lr']} and current epoch is {self.start_epoch}")
else:
self.start_epoch = 1
self.local_model = local_model
self.target_model = target_model
def load_data(self,params_loaded):
self.statehelper_dic ={}
self.allStateHelperList=[]
self.participants_list=[]
self.advasarial_namelist=params_loaded['adversary_list']
self.benign_namelist = []
self.feature_dict = dict()
filepath_prefix='./data/loan/'
all_userfilename_list = os.listdir(filepath_prefix)
for j in range(0,len(all_userfilename_list)):
user_filename = all_userfilename_list[j]
state_name = user_filename[5:7]
helper = StateHelper(params=params_loaded)
file_path = filepath_prefix+ user_filename
helper.load_data(file_path)
self.allStateHelperList.append(helper)
helper.name = state_name
self.statehelper_dic[state_name] = helper
if j==0:
for k in range(0,len(helper.all_dataset.data_column_name)):
self.feature_dict[helper.all_dataset.data_column_name[k]]=k
for j in range(0, params_loaded['number_of_total_participants']):
if j >= len(all_userfilename_list):
break
user_filename = all_userfilename_list[j]
state_name = user_filename[5:7]
if state_name not in self.advasarial_namelist:
self.benign_namelist.append(state_name)
if params_loaded['is_random_namelist']==False:
self.participants_list = params_loaded['participants_namelist']
else:
self.participants_list= self.benign_namelist+ self.advasarial_namelist
class LoanDataset(data.Dataset):
# label from 0 ~ 8
# ['Current', 'Fully Paid', 'Late (31-120 days)', 'In Grace Period', 'Charged Off',
# 'Late (16-30 days)', 'Default', 'Does not meet the credit policy. Status:Fully Paid',
# 'Does not meet the credit policy. Status:Charged Off']
def __init__(self, csv_file):
"""
Args:
csv_file (string): Path to the csv file with annotations.
"""
self.train = True
self.df = pd.read_csv(csv_file)
self.train_data = []
self.train_labels = []
self.test_data = []
self.test_labels = []
loans_df = self.df.copy()
x_feature = list(loans_df.columns)
x_feature.remove('loan_status')
x_val = loans_df[x_feature]
y_val = loans_df['loan_status']
# x_val.head()
y_val=y_val.astype('int')
x_train, x_test, y_train, y_test = train_test_split(x_val, y_val, test_size=0.2, random_state=42)
self.data_column_name = x_train.columns.values.tolist() # list
self.label_column_name= x_test.columns.values.tolist()
self.train_data = x_train.values # numpy array
self.test_data = x_test.values
self.train_labels = y_train.values
self.test_labels = y_test.values
print(csv_file, "train", len(self.train_data),"test",len(self.test_data))
def __len__(self):
if self.train:
return len(self.train_data)
else:
return len(self.test_data)
def __getitem__(self, index):
if self.train:
data, label = self.train_data[index], self.train_labels[index]
else:
data, label = self.test_data[index], self.test_labels[index]
return data, label
def SetIsTrain(self,isTrain):
self.train =isTrain
def getPortion(self,loan_status=0):
train_count= 0
test_count=0
for i in range(0,len(self.train_labels)):
if self.train_labels[i]==loan_status:
train_count+=1
for i in range(0,len(self.test_labels)):
if self.test_labels[i]==loan_status:
test_count+=1
return (train_count+test_count)/ (len(self.train_labels)+len(self.test_labels)), \
train_count/len(self.train_labels), test_count/len(self.test_labels)
if __name__ == '__main__':
with open(f'./utils/loan_params.yaml', 'r') as f:
params_loaded = yaml.load(f)
current_time = datetime.datetime.now().strftime('%b.%d_%H.%M.%S')
helper = LoanHelper(current_time=current_time, params=params_loaded,
name=params_loaded.get('name', 'loan'))
helper.load_data(params_loaded)
state_keys = list(helper.statehelper_dic.keys())
for i in range(0,len(state_keys)):
state_helper = helper.statehelper_dic[state_keys[i]]
data_source = state_helper.get_trainloader()
data_iterator = data_source
count= 0
for batch_id, batch in enumerate(data_iterator):
count +=1
print(state_keys[i], "train batch num",count)
break
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。