1 Star 0 Fork 0

金昆龙/DBA-master

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
loan_helper.py 8.02 KB
一键复制 编辑 原始数据 按行查看 历史
金昆龙 提交于 2024-08-05 15:05 . 源文件2
from collections import defaultdict
import config
import torch
import torch.utils.data
import datetime
from helper import Helper
import random
import logging
from torchvision import datasets, transforms
import numpy as np
from models.loan_model import LoanNet
import csv
import os
import pandas as pd
import torch
import torch.utils.data as data
from sklearn.model_selection import train_test_split
import os
import yaml
logger = logging.getLogger("logger")
POISONED_PARTICIPANT_POS = 0
class StateHelper():
def __init__(self, params):
self.params= params
self.name=""
def load_data(self, filename='./data/loan/loan_IA.csv'):
logger.info('Loading data')
self.all_dataset = LoanDataset(filename)
def get_trainloader(self):
self.all_dataset.SetIsTrain(True)
train_loader = torch.utils.data.DataLoader(self.all_dataset, batch_size=self.params['batch_size'],
shuffle=True)
return train_loader
def get_testloader(self):
self.all_dataset.SetIsTrain(False)
test_loader = torch.utils.data.DataLoader(self.all_dataset,
batch_size=self.params['test_batch_size'],
shuffle=False)
return test_loader
def get_poison_trainloader(self):
self.all_dataset.SetIsTrain(True)
return torch.utils.data.DataLoader(self.all_dataset,
batch_size=self.params['batch_size'],
shuffle=True)
def get_poison_testloader(self):
self.all_dataset.SetIsTrain(False)
return torch.utils.data.DataLoader(self.all_dataset,
batch_size=self.params['test_batch_size'],
shuffle=False)
def get_batch(self, train_data, bptt, evaluation=False):
data, target = bptt
data = data.float().to(config.device)
target = target.long().to(config.device)
if evaluation:
data.requires_grad_(False)
target.requires_grad_(False)
return data, target
class LoanHelper(Helper):
def poison(self):
return
def create_model(self):
local_model = LoanNet(name='Local',
created_time=self.params['current_time'])
local_model=local_model.to(config.device)
target_model = LoanNet(name='Target',
created_time=self.params['current_time'])
target_model=target_model.to(config.device)
if self.params['resumed_model']:
if torch.cuda.is_available():
loaded_params = torch.load(f"saved_models/{self.params['resumed_model_name']}")
else:
loaded_params = torch.load(f"saved_models/{self.params['resumed_model_name']}",
map_location='cpu')
target_model.load_state_dict(loaded_params['state_dict'])
self.start_epoch = loaded_params['epoch']+1
self.params['lr'] = loaded_params.get('lr', self.params['lr'])
logger.info(f"Loaded parameters from saved model: LR is"
f" {self.params['lr']} and current epoch is {self.start_epoch}")
else:
self.start_epoch = 1
self.local_model = local_model
self.target_model = target_model
def load_data(self,params_loaded):
self.statehelper_dic ={}
self.allStateHelperList=[]
self.participants_list=[]
self.advasarial_namelist=params_loaded['adversary_list']
self.benign_namelist = []
self.feature_dict = dict()
filepath_prefix='./data/loan/'
all_userfilename_list = os.listdir(filepath_prefix)
for j in range(0,len(all_userfilename_list)):
user_filename = all_userfilename_list[j]
state_name = user_filename[5:7]
helper = StateHelper(params=params_loaded)
file_path = filepath_prefix+ user_filename
helper.load_data(file_path)
self.allStateHelperList.append(helper)
helper.name = state_name
self.statehelper_dic[state_name] = helper
if j==0:
for k in range(0,len(helper.all_dataset.data_column_name)):
self.feature_dict[helper.all_dataset.data_column_name[k]]=k
for j in range(0, params_loaded['number_of_total_participants']):
if j >= len(all_userfilename_list):
break
user_filename = all_userfilename_list[j]
state_name = user_filename[5:7]
if state_name not in self.advasarial_namelist:
self.benign_namelist.append(state_name)
if params_loaded['is_random_namelist']==False:
self.participants_list = params_loaded['participants_namelist']
else:
self.participants_list= self.benign_namelist+ self.advasarial_namelist
class LoanDataset(data.Dataset):
# label from 0 ~ 8
# ['Current', 'Fully Paid', 'Late (31-120 days)', 'In Grace Period', 'Charged Off',
# 'Late (16-30 days)', 'Default', 'Does not meet the credit policy. Status:Fully Paid',
# 'Does not meet the credit policy. Status:Charged Off']
def __init__(self, csv_file):
"""
Args:
csv_file (string): Path to the csv file with annotations.
"""
self.train = True
self.df = pd.read_csv(csv_file)
self.train_data = []
self.train_labels = []
self.test_data = []
self.test_labels = []
loans_df = self.df.copy()
x_feature = list(loans_df.columns)
x_feature.remove('loan_status')
x_val = loans_df[x_feature]
y_val = loans_df['loan_status']
# x_val.head()
y_val=y_val.astype('int')
x_train, x_test, y_train, y_test = train_test_split(x_val, y_val, test_size=0.2, random_state=42)
self.data_column_name = x_train.columns.values.tolist() # list
self.label_column_name= x_test.columns.values.tolist()
self.train_data = x_train.values # numpy array
self.test_data = x_test.values
self.train_labels = y_train.values
self.test_labels = y_test.values
print(csv_file, "train", len(self.train_data),"test",len(self.test_data))
def __len__(self):
if self.train:
return len(self.train_data)
else:
return len(self.test_data)
def __getitem__(self, index):
if self.train:
data, label = self.train_data[index], self.train_labels[index]
else:
data, label = self.test_data[index], self.test_labels[index]
return data, label
def SetIsTrain(self,isTrain):
self.train =isTrain
def getPortion(self,loan_status=0):
train_count= 0
test_count=0
for i in range(0,len(self.train_labels)):
if self.train_labels[i]==loan_status:
train_count+=1
for i in range(0,len(self.test_labels)):
if self.test_labels[i]==loan_status:
test_count+=1
return (train_count+test_count)/ (len(self.train_labels)+len(self.test_labels)), \
train_count/len(self.train_labels), test_count/len(self.test_labels)
if __name__ == '__main__':
with open(f'./utils/loan_params.yaml', 'r') as f:
params_loaded = yaml.load(f)
current_time = datetime.datetime.now().strftime('%b.%d_%H.%M.%S')
helper = LoanHelper(current_time=current_time, params=params_loaded,
name=params_loaded.get('name', 'loan'))
helper.load_data(params_loaded)
state_keys = list(helper.statehelper_dic.keys())
for i in range(0,len(state_keys)):
state_helper = helper.statehelper_dic[state_keys[i]]
data_source = state_helper.get_trainloader()
data_iterator = data_source
count= 0
for batch_id, batch in enumerate(data_iterator):
count +=1
print(state_keys[i], "train batch num",count)
break
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/jin-kunlong/DBA-master.git
git@gitee.com:jin-kunlong/DBA-master.git
jin-kunlong
DBA-master
DBA-master
master

搜索帮助

0d507c66 1850385 C8b1a773 1850385