代码拉取完成,页面将自动刷新
%!TEX TS-program = xelatex
%!TEX encoding = UTF-8 Unicode
%-shell-escape
\documentclass[12pt,openany,twoside]{book}%
\usepackage{geometry}
\geometry{
a4paper,% redundant if already in \documentclass
left=20mm,
right=20mm,
top=25mm,
bottom=15mm,
headheight=15pt,
heightrounded,% better use it
}
\usepackage{graphicx}
\usepackage{amssymb,amsmath,amsthm}
\usepackage{booktabs}
\usepackage[CJKbookmarks, colorlinks, bookmarksnumbered=true,pdfstartview=FitH,linkcolor=black,backref=page]{hyperref} % 书签功能,选项去掉链接红色方框%“colorlinks”的意思是将超链接以颜色来标识,而并非使用默认的方框来标识。linkcolor=blue, anchorcolor=green, citecolor=green分别表示用来标识link, anchor, cite等各种链接的颜色,pdfborder=001,交叉引用边框
\usepackage{titlesec, titletoc}
\usepackage{xeCJK}
% \setCJKmainfont[BoldFont={NotoSans-Bold}]{NotoSans-Bold}
% \setCJKfamilyfont{kai}[NotoSans-Bold]{NotoSans-Bold}
% \setCJKfamilyfont{song}[NotoSans-Bold]{NotoSans-Bold}
% \setCJKfamilyfont{hei}[NotoSans-Bold]{NotoSans-Bold}
% \setCJKfamilyfont{fsong}[NotoSans-Bold]{NotoSans-Bold}
% \setCJKfamilyfont{fzwei}{NotoSans-Bold}
% \setCJKfamilyfont{fzsong}{NotoSans-Bold}
% \newcommand{\kai}[1]{{\CJKfamily{kai}#1}}
% \newcommand{\hei}[1]{{\CJKfamily{hei}#1}}
% \newcommand{\fsong}[1]{{\CJKfamily{fsong}#1}}
% \setromanfont[Mapping=tex-text]{TeX Gyre Pagella}
% \setsansfont[Scale=MatchLowercase,Mapping=tex-text]{TeX Gyre Pagella}
% \setmonofont[Scale=MatchLowercase]{Courier New}
% 汉化
%\RequirePackage{xeCJK}
\setCJKmainfont[Extension=.otf,
Path=fonts/,
UprightFont=NotoSerifCJKsc-Regular,
BoldFont=NotoSerifCJKsc-Bold,
ItalicFont=NotoSerifCJKsc-Regular,
BoldItalicFont=NotoSerifCJKsc-Bold,
ItalicFeatures=FakeSlant,
BoldItalicFeatures=FakeSlant]{NotoSerifCJKsc}
\setCJKsansfont[
Extension=.otf,
Path=fonts/,
UprightFont=NotoSansCJKsc-Regular,
BoldFont=NotoSansCJKsc-Bold,
ItalicFont=NotoSansCJKsc-Regular,
BoldItalicFont=NotoSansCJKsc-Bold,
ItalicFeatures=FakeSlant,
BoldItalicFeatures=FakeSlant]{NotoSansSC}
\setCJKmonofont[
Extension=.otf,
Path=fonts/,
UprightFont=NotoSansMonoCJKsc-Regular,
BoldFont=NotoSansMonoCJKsc-Bold,
ItalicFont=NotoSansMonoCJKsc-Regular,
BoldItalicFont=NotoSansMonoCJKsc-Bold,
ItalicFeatures=FakeSlant,
BoldItalicFeatures=FakeSlant]{NotoSansMonoSC}
\setlength{\parindent}{0pt}
\linespread{1.2}
\setlength{\parskip}{15pt}
\renewcommand\contentsname{目~录~}
\renewcommand\listfigurename{图~列~表~}
\renewcommand\listtablename{表~目~录~}
\usepackage{tikz,pgf}
\usetikzlibrary{shapes,calc}
\makeatletter
\newcommand\thumb{%拇指索引
\if@mainmatter
\begingroup
\catcode`\$=3
\tikzpicture[remember picture,overlay] % thumb index
\ifodd\value{page}
\node[fill=gray,text=black,anchor=north east,xshift=2mm,
yshift=-22mm-\arabic{chapter}*20mm,
shape=semicircle,shape border rotate=90,
minimum height=10mm,minimum width=5mm,
font=\normalfont\sffamily\bfseries\Huge]
at (current page.north east)
{\llap{\arabic{chapter}\hspace{1mm}}};
\else
\node[fill=gray,text=black,anchor=north west,xshift=-2mm,
yshift=-22mm-\arabic{chapter}*20mm,
shape=semicircle,shape border rotate=270,
minimum height=10mm,minimum width=5mm,
font=\normalfont\sffamily\bfseries\Huge]
at (current page.north west)
{\rlap{\hspace{1mm}\arabic{chapter}}};
\fi
\endtikzpicture
\endgroup
\fi}
\makeatother
\usepackage{fancyhdr}
\fancypagestyle{plain}{%
\fancyhf{} % clear all header and footer fields
\fancyhead[r]{\thumb} % except the center
\renewcommand{\headrulewidth}{0pt}
\renewcommand{\footrulewidth}{0pt}}
\titlecontents{chapter}
[0em]
{}
{\large\CJKfamily{kaiti}{第 \thecontentslabel 章\quad}}
{}{\hfill\contentspage}
%
\titlecontents{section}
[4em]
{}
{\thecontentslabel\quad}
{}{\titlerule*{.} \contentspage}
\titleformat{\chapter}[display]
{\CJKfamily{kaiti}\Large}
{\titlerule[1pt]%
\filleft%
\parbox{1cm}{\vbox to 2.5cm{%
\vfill\hbox to 1cm{\hfill\Huge 第 \hfill}%
\vfill\hbox to 1cm{\hfill\Huge \thechapter\hfill}%
\vfill\hbox to 1cm{\hfill\Huge 章 \hfill}%
}}}
{1ex}
{\Huge
\filright}
[{\titlerule[2pt]}]
\usepackage{tcolorbox}
\tcbuselibrary{many}%all,theorems
\newtcolorbox{marker}[1][]{enhanced,
before skip=2mm,after skip=3mm,
boxrule=0.4pt,left=5mm,right=2mm,top=1mm,bottom=1mm,
colback=yellow!50,
colframe=yellow!20!black,
sharp corners,rounded corners=southeast,arc is angular,arc=3mm,
underlay={%
\path[fill=tcbcol@back!80!black] ([yshift=3mm]interior.south east)--++(-0.4,-0.1)--++(0.1,-0.2);
\path[draw=tcbcol@frame,shorten <=-0.05mm,shorten >=-0.05mm] ([yshift=3mm]interior.south east)--++(-0.4,-0.1)--++(0.1,-0.2);
\path[fill=yellow!50!black,draw=none] (interior.south west) rectangle node[white]{\Huge\bfseries !} ([xshift=4mm]interior.north west);
},
drop fuzzy shadow,#1}
%-------------------------------------------------------------------------------------------------
\newtcolorbox{deprecated}{blank,breakable,watermark text=deprecated}
\title{函数与导数}
\author{贾方正}
\date{2019年五校联考整理}
\begin{document}
\maketitle
\tableofcontents
%正文开始录入
\chapter{导函数符号讨论“界点”如何确定}
在某个区间$(a,b)$内,如果$f'(x)>0$,那么函数$y=f(x)$在这个区间内单调递增;如果$f'(x)<0$,那么函数$y=f(x)$在这个区间内单调递增.
\begin{minipage}[]{0.5\textwidth}
\textbf{例}已知导函数$f'(x)$的下列信息:\\
当$1<x<4$时,$f'(x)>0$;\\
当$x>4$,或$x<1$时,$f'(x)<0$;\\
当$x=4$,或$x=1$时,$f'(x)=0$.\\
试画出函数$f(x)$图象的大致形状.\\
\textcolor{red}{\hspace{2em}解:当$x=4$,或$x=1$时$f'(x)=0$,这两个点比较特殊,我们称为“临界点”,简称为“界点”.}
\end{minipage}%
\begin{minipage}[]{0.5\textwidth}
\centering
\hspace{10em}\begin{tikzpicture}[scale=0.6,line width=0.6pt]
\tikzstyle{every node}=[font=\small,scale=0.65]
%%定义坐标轴大小 %%x正半轴 %%x负半轴
\def\xy{7} \def\xz{1} %%x正半轴 %%x负半轴
\def\ys{4} \def\yx{1} %%y正半轴 %%y负半轴
%%画坐标轴
\draw[-stealth] (-\xz,0)--(\xy,0) node[below]{$x$} coordinate(x axis);
\draw[-stealth] (0,-\yx)--(0,\ys) node[right]{$y$} coordinate(y axis);
%\draw[help lines,step=0.5](-\xz,-\yx) grid (\xy,\ys);
%%画函数曲线
\draw[red] (-1,4) .. controls (1,1) .. (3,3);
\draw[red] (3,3).. controls (4,4) .. (6,-1);
\draw[dashed] (1,0)--(1,1.75) (3.8,3.6)--(3.8,0);
% \draw (-1,0) parabola[bend pos=0.5] bend +(0,2) +(3,0);
% \draw (3,0) parabola[bend pos=0.5] bend +(0,2) +(5,0);
% \draw (0,0) to [out=90,in=180] (3,2);%,edge node={node [sloped,above] {x}}
% \draw (-1,4) to [out=-80,in=180] (1,1) to [out=0,in=180] (3,3);
%%绘制坐标轴
\foreach \x/\xtext in {1/1,3.8/4}
\draw[xshift=\x cm] (0pt,4pt) -- (0pt,-4pt) node[below] {$\xtext$};
\end{tikzpicture}
\end{minipage}%
\section{根据二次项系数确定分类“界点”}
\begin{tcolorbox}
已知函数$f(x)=1-x^2+a\ln x(a\in\mathbb{R})$.
\end{tcolorbox}
\begin{marker}
导函数中含有二次三项式,需对最高项的系数分类讨论:\\
(1)根据二次项系数是否为$0$,判断函数是否为二次函数;\\
(2)由二次项系数的正负,判断二次函数图象的开口方向,从而寻找导数的变号零点.\\
\end{marker}
\section{根据判别式确定分类“界点”}
\begin{marker}
求导后,要判断导函数是否有零点(或导函数分子能否分解因式),若导函数是二次函数
或与二次函数有关,此时涉及二次方程问题,Δ与0 的大小关系往往不确定,所以必须寻找
分界点,进行分类讨论.
\end{marker}
\section{根据导函数零点的大小确定分类“界点”}
\begin{marker}
(1)根据导函数的“零点”划分定义域时,既要考虑导函数“零点”是否在定义域内,
还要考虑多个“零点”的大小问题,如果多个“零点”的大小关系不确定,也需要分类讨
论.\\
(2)导函数“零点”可求,可根据“零点”之间及“零点”与区间端点之间的大小关系
进行分类讨论.
\end{marker}
\section{根据导函数零点与定义域的关系确定分类“界点”}
\begin{marker}
导函数零点是否分布在定义域内,零点将定义域划分为哪几个区间,若不能确定,则
需要分类讨论.
\end{marker}
\chapter{到有关$x$与$e^x$,$\ln x$的组合函数}
\section{$x$与 $\ln x$的组合函数问题}
\end{document}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。