代码拉取完成,页面将自动刷新
同步操作将从 新无止竞/MNN_FaceTrack 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
#ifndef ZEUSEESFACETRACKING_H
#define ZEUSEESFACETRACKING_H
#include <opencv2/opencv.hpp>
#include "mtcnn.h"
#include "time.h"
cv::Rect boundingRect(const std::vector<cv::Point>& pts) {
if (pts.size() > 1)
{
int xmin = pts[0].x;
int ymin = pts[0].y;
int xmax = pts[0].x;
int ymax = pts[0].y;
for (int i = 1; i < pts.size(); i++)
{
if (pts[i].x < xmin)
xmin = pts[i].x;
if (pts[i].y < ymin)
ymin = pts[i].y;
if (pts[i].x > xmax)
xmax = pts[i].x;
if (pts[i].y > ymax)
ymax = pts[i].y;
}
return cv::Rect(xmin, ymin, xmax - xmin, ymax - ymin);
}
}
//typedef int T;
//T i = 1;
class Face {
public:
Face(int instance_id,cv::Rect loc_t) {
face_id = instance_id;
isCanShow = false; //追踪一次后待框稳定后即可显示
loc = loc_t;
}
Face() {
isCanShow = false; //追踪一次后待框稳定后即可显示
}
FaceInfo faceBbox;
int face_id = -1;
long frameId = 0;
int ptr_num = 0;
bool isCanShow;
cv::Mat frame_face_prev;
cv::Rect loc;
//int loseNum = 0;
static cv::Rect SquarePadding(cv::Rect facebox, int margin_rows, int margin_cols, bool max_b)
{
int c_x = facebox.x + facebox.width / 2;
int c_y = facebox.y + facebox.height / 2;
int large = 0;
if (max_b)
large = max(facebox.height, facebox.width) / 2;
else
large = min(facebox.height, facebox.width) / 2;
cv::Rect rectNot(c_x - large, c_y - large, c_x + large, c_y + large);
rectNot.x = max(0, rectNot.x);
rectNot.y = max(0, rectNot.y);
rectNot.height = min(rectNot.height, margin_rows - 1);
rectNot.width = min(rectNot.width, margin_cols - 1);
if (rectNot.height - rectNot.y != rectNot.width - rectNot.x)
return SquarePadding(cv::Rect(rectNot.x, rectNot.y, rectNot.width - rectNot.x, rectNot.height - rectNot.y), margin_rows, margin_cols, false);
return cv::Rect(rectNot.x, rectNot.y, rectNot.width - rectNot.x, rectNot.height - rectNot.y);
}
static cv::Rect SquarePadding(cv::Rect facebox, int padding)
{
int c_x = facebox.x - padding;
int c_y = facebox.y - padding;
return cv::Rect(facebox.x - padding, facebox.y - padding, facebox.width + padding * 2, facebox.height + padding * 2);;
}
static double getDistance(cv::Point x, cv::Point y)
{
return sqrt((x.x - y.x) * (x.x - y.x) + (x.y - y.y) * (x.y - y.y));
}
};
class FaceTracking {
public:
FaceTracking(std::string modelPath)
{
this->detector = new MTCNN();
this->detector->init(modelPath);
this->detector->setIsMaxFace(isMaxFace);
faceMinSize = 80;
this->detector->setMinFace(faceMinSize);
detection_Time = -1;
}
~FaceTracking() {
delete this->detector;
}
void detecting(cv::Mat& image) {
std::vector<FaceInfo> finalBbox;
detector->Detect_T(image, finalBbox);
const int num_box = finalBbox.size();
std::vector<cv::Rect> bbox;
bbox.resize(num_box);
candidateFaces_lock = 1;
for (int i = 0; i < num_box; i++) {
bbox[i] = cv::Rect(finalBbox[i].bbox.xmin, finalBbox[i].bbox.ymin, finalBbox[i].bbox.xmax - finalBbox[i].bbox.xmin + 1,
finalBbox[i].bbox.ymax - finalBbox[i].bbox.ymin + 1);
bbox[i] = Face::SquarePadding(bbox[i], image.rows, image.cols, true);
std::shared_ptr<Face> face(new Face(trackingID, bbox[i]));
image(bbox[i]).copyTo(face->frame_face_prev);
trackingID = trackingID + 1;
candidateFaces.push_back(*face);
}
candidateFaces_lock = 0;
}
void Init(cv::Mat& image) {
ImageHighDP = image.clone();
trackingID = 0;
detection_Interval = 150; //detect faces every 200 ms
detecting(image);
stabilization = false;
}
void doingLandmark_onet(cv::Mat& img, FaceInfo& faceBbox, cv::Rect &face_roi, int stable_state = 0) {
faceBbox = detector->onet(img, face_roi);
}
void tracking_corrfilter(const cv::Mat& frame, const cv::Mat& model, cv::Rect& trackBox, float scale)
{
trackBox.x /= scale;
trackBox.y /= scale;
trackBox.height /= scale;
trackBox.width /= scale;
int zeroadd_x = 0;
int zeroadd_y = 0;
cv::Mat frame_;
cv::Mat model_;
cv::resize(frame, frame_, cv::Size(), 1 / scale, 1 / scale);
cv::resize(model, model_, cv::Size(), 1 / scale, 1 / scale);
cv::Mat gray;
cvtColor(frame_, gray, cv::COLOR_RGB2GRAY);
cv::Mat gray_model;
cvtColor(model_, gray_model, cv::COLOR_RGB2GRAY);
cv::Rect searchWindow;
searchWindow.width = trackBox.width * 3;
searchWindow.height = trackBox.height * 3;
searchWindow.x = trackBox.x + trackBox.width * 0.5 - searchWindow.width * 0.5;
searchWindow.y = trackBox.y + trackBox.height * 0.5 - searchWindow.height * 0.5;
searchWindow &= cv::Rect(0, 0, frame_.cols, frame_.rows);
cv::Mat similarity;
matchTemplate(gray(searchWindow), gray_model, similarity, cv::TM_CCOEFF_NORMED);
double mag_r;
cv::Point point;
minMaxLoc(similarity, 0, &mag_r, 0, &point);
trackBox.x = point.x + searchWindow.x;
trackBox.y = point.y + searchWindow.y;
trackBox.x *= scale;
trackBox.y *= scale;
trackBox.height *= scale;
trackBox.width *= scale;
}
bool tracking(cv::Mat& image, Face& face)
{
cv::Rect faceROI = face.loc;
//cv::Mat faceROI_Image;
tracking_corrfilter(image, face.frame_face_prev, faceROI, tpm_scale);
//image(faceROI).copyTo(faceROI_Image);
FaceInfo temp;
doingLandmark_onet(image, temp, faceROI, face.frameId > 1);
//float sim = detector->rnet(image, faceROI);
float sim = temp.bbox.score;
if (sim > 0.1) {
//stablize
//float diff_x = 0;
//float diff_y = 0;
cv::Rect bdbox;
bdbox.x = temp.bbox.xmin;
bdbox.y = temp.bbox.ymin;
bdbox.width = temp.bbox.xmax - temp.bbox.xmin;
bdbox.height = temp.bbox.ymax - temp.bbox.ymin;
//bdbox = Face::SquarePadding(bdbox, static_cast<int>(bdbox.height * -0.05));
bdbox = Face::SquarePadding(bdbox, image.rows, image.cols, 1);
face.faceBbox = temp;
face.loc = bdbox;
//face.loseNum = 0;
image(face.loc).copyTo(face.frame_face_prev);
face.frameId += 1;
face.isCanShow = true;
return true;
}
else
{
//face.loseNum++;
return false;
}
}
void setMask(cv::Mat& image, cv::Rect& rect_mask)
{
int height = image.rows;
int width = image.cols;
cv::Mat subImage = image(rect_mask);
subImage.setTo(0);
}
void update(cv::Mat& image)
{
ImageHighDP = image.clone();
//std::cout << trackingFace.size() << std::endl;
if (candidateFaces.size() > 0 && !candidateFaces_lock)
{
for (int i = 0; i < candidateFaces.size(); i++)
{
trackingFace.push_back(candidateFaces[i]);
}
candidateFaces.clear();
}
for (std::vector<Face>::iterator iter = trackingFace.begin(); iter != trackingFace.end();)
{
if (!tracking(image, *iter) /*&& iter->loseNum == 5*/)
{
iter = trackingFace.erase(iter); //追踪失败 则删除此人脸
}
else {
iter++;
}
}
if (detection_Time < 0)
{
detection_Time = (double)cv::getTickCount();
}
else {
double diff = (double)(cv::getTickCount() - detection_Time) * 1000 / cv::getTickFrequency();
if (diff > detection_Interval)
{
//set Mask to protect the tracking face not to be detected.
for (auto& face : trackingFace)
{
setMask(ImageHighDP, face.loc);
}
detection_Time = (double)cv::getTickCount();
// do detection in thread
detecting(ImageHighDP);
}
}
}
std::vector<Face> trackingFace; //跟踪中的人脸
private:
//int isLostDetection;
//int isTracking;
//int isDetection;
cv::Mat ImageHighDP;
int faceMinSize;
MTCNN* detector;
std::vector<Face> candidateFaces; // 将检测到的人脸放入此列队 待跟踪的人脸
bool candidateFaces_lock;
double detection_Time;
double detection_Interval;
int trackingID;
bool stabilization;
int tpm_scale = 2;
bool isMaxFace = true;
};
#endif //ZEUSEESFACETRACKING_H
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。