1 Star 0 Fork 1

icbugcodeshare/CIPIC图像分类

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
predict.py 1.74 KB
一键复制 编辑 原始数据 按行查看 历史
icbug 提交于 2020-06-06 10:28 . tensorflow CIPIC图像分类
# 导入所需工具包
from keras.models import load_model
import argparse
import pickle
import cv2
# 设置输入参数
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
help="path to input image we are going to classify")
ap.add_argument("-m", "--model", required=True,
help="path to trained Keras model")
ap.add_argument("-l", "--label-bin", required=True,
help="path to label binarizer")
ap.add_argument("-w", "--width", type=int, default=28,
help="target spatial dimension width")
ap.add_argument("-e", "--height", type=int, default=28,
help="target spatial dimension height")
ap.add_argument("-f", "--flatten", type=int, default=-1,
help="whether or not we should flatten the image")
args = vars(ap.parse_args())
# 加载测试数据并进行相同预处理操作
image = cv2.imread(args["image"])
output = image.copy()
image = cv2.resize(image, (args["width"], args["height"]))
# scale the pixel values to [0, 1]
image = image.astype("float") / 255.0
# 是否要对图像就行拉平操作
if args["flatten"] > 0:
image = image.flatten()
image = image.reshape((1, image.shape[0]))
# CNN的时候需要原始图像
else:
image = image.reshape((1, image.shape[0], image.shape[1],
image.shape[2]))
# 读取模型和标签
print("[INFO] loading network and label binarizer...")
model = load_model(args["model"])
lb = pickle.loads(open(args["label_bin"], "rb").read())
# 预测
preds = model.predict(image)
# 得到预测结果以及其对应的标签
i = preds.argmax(axis=1)[0]
label = lb.classes_[i]
# 在图像中把结果画出来
text = "{}: {:.2f}%".format(label, preds[0][i] * 100)
cv2.putText(output, text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7,
(0, 0, 255), 2)
# 绘图
cv2.imshow("Image", output)
cv2.waitKey(0)
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/icbugcodeshare/cipic.git
git@gitee.com:icbugcodeshare/cipic.git
icbugcodeshare
cipic
CIPIC图像分类
master

搜索帮助