代码拉取完成,页面将自动刷新
# Utility
import numpy as np
from os import listdir, mkdir, sep
from os.path import join, exists, splitext
from scipy.misc import imread, imsave, imresize
import skimage
import skimage.io
import skimage.transform
import tensorflow as tf
from PIL import Image
from functools import reduce
def list_images(directory):
images = []
dir = listdir(directory)
dir.sort()
for file in dir:
name = file.lower()
if name.endswith('.png'):
images.append(join(directory, file))
elif name.endswith('.jpg'):
images.append(join(directory, file))
elif name.endswith('.jpeg'):
images.append(join(directory, file))
elif name.endswith('.bmp'):
images.append(join(directory, file))
return images
# read images
def get_image(path, height=256, width=256, set_mode='L'):
image = imread(path, mode=set_mode)
if height is not None and width is not None:
image = imresize(image, [height, width], interp='nearest')
return image
def get_train_images(paths, resize_len=512, crop_height=256, crop_width=256, flag=True):
if isinstance(paths, str):
paths = [paths]
images = []
for path in paths:
image = get_image(path, height=crop_height, width=crop_width, set_mode='L')
if flag:
image = np.stack(image, axis=0)
image = np.stack((image, image, image), axis=-1)
else:
image = np.stack(image, axis=0)
image = image.reshape([crop_height, crop_width, 1])
images.append(image)
images = np.stack(images, axis=-1)
return images
def get_train_images_rgb(paths, crop_height=256, crop_width=256, flag=False):
if isinstance(paths, str):
paths = [paths]
images = []
for path in paths:
image = get_image(path, height=crop_height, width=crop_width, set_mode='RGB')
image = np.stack(image, axis=0)
images.append(image)
images = np.stack(images, axis=-1)
return images
def get_test_image_rgb(path, resize_len=512, crop_height=256, crop_width=256, flag = True):
# image = imread(path, mode='L')
image = imread(path, mode='RGB')
return image
def get_images_test(path, mod_type='L', height=None, width=None):
image = imread(path, mode=mod_type)
if height is not None and width is not None:
image = imresize(image, [height, width], interp='nearest')
if mod_type=='L':
d = image.shape
image = np.reshape(image, [d[0], d[1], 1])
return image
def get_images(paths, height=None, width=None):
if isinstance(paths, str):
paths = [paths]
images = []
for path in paths:
image = imread(path, mode='RGB')
if height is not None and width is not None:
image = imresize(image, [height, width], interp='nearest')
images.append(image)
images = np.stack(images, axis=0)
print('images shape gen:', images.shape)
return images
def save_images(paths, datas, save_path, prefix=None, suffix=None):
if isinstance(paths, str):
paths = [paths]
t1 = len(paths)
t2 = len(datas)
assert(len(paths) == len(datas))
if not exists(save_path):
mkdir(save_path)
if prefix is None:
prefix = ''
if suffix is None:
suffix = ''
for i, path in enumerate(paths):
data = datas[i]
# print('data ==>>\n', data)
if data.shape[2] == 1:
data = data.reshape([data.shape[0], data.shape[1]])
# print('data reshape==>>\n', data)
name, ext = splitext(path)
name = name.split(sep)[-1]
path = join(save_path, prefix + suffix + ext)
print('data path==>>', path)
# new_im = Image.fromarray(data)
# new_im.show()
imsave(path, data)
def get_l2_norm_loss(diffs):
shape = diffs.get_shape().as_list()
size = reduce(lambda x, y: x * y, shape) ** 2
sum_of_squared_diffs = tf.reduce_sum(tf.square(diffs))
return sum_of_squared_diffs / size
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。