代码拉取完成,页面将自动刷新
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader, random_split, Subset, ConcatDataset
from torchvision.datasets import *
from torchvision.transforms.transforms import *
from torchvision.transforms.functional import *
from torchvision.utils import save_image
from tqdm import tqdm
from torchplus.utils import Init, ClassificationAccuracy
if __name__ == '__main__':
batch_size = 8
train_epoches = 50
log_epoch = 2
class_num = 40
root_dir = "D:/log/paper1/logZZPMAIN"
dataset_dir = "E:/datasets/at&t face database"
h = 112
w = 92
init = Init(seed=9970, log_root_dir=root_dir, split=True,
backup_filename=__file__, tensorboard=True, comment=f'main AT and T face')
output_device = init.get_device()
writer = init.get_writer()
log_dir, model_dir = init.get_log_dir()
data_workers = 2
transform = Compose([
Grayscale(num_output_channels=1),
ToTensor()
])
ds = ImageFolder(dataset_dir, transform=transform)
ds_len = len(ds)
train_ds, test_ds = random_split(
ds, [ds_len*7//10, ds_len-ds_len*7//10])
train_ds_len = len(train_ds)
test_ds_len = len(test_ds)
print(train_ds_len)
print(test_ds_len)
train_dl = DataLoader(dataset=train_ds, batch_size=batch_size,
shuffle=True, num_workers=data_workers, drop_last=True)
test_dl = DataLoader(dataset=test_ds, batch_size=batch_size,
shuffle=False, num_workers=data_workers, drop_last=False)
class Net(nn.Module):
def __init__(self, input_features, output_features):
super(Net, self).__init__()
self.input_features = input_features
self.output_features = output_features
self.regression = nn.Linear(
in_features=self.input_features, out_features=self.output_features)
def forward(self, x):
x = self.regression(x)
return x
class MLP(nn.Module):
def __init__(self, input_features, output_features):
super(MLP, self).__init__()
self.input_features = input_features
self.middle_features = 3000
self.output_features = output_features
self.fc = nn.Linear(in_features=self.input_features,
out_features=self.middle_features)
self.regression = nn.Linear(
in_features=self.middle_features, out_features=self.output_features)
def forward(self, x):
x = self.fc(x)
x = self.regression(x)
return x
mynet = Net(h*w, class_num).to(output_device).train(True)
optimizer = optim.SGD(mynet.parameters(), lr=0.01)
for epoch_id in tqdm(range(1, train_epoches+1), desc='Total Epoch'):
iters = tqdm(train_dl, desc=f'epoch {epoch_id}')
for i, (im, label) in enumerate(iters):
im = im.to(output_device)
label = label.to(output_device)
bs, c, h, w = im.shape
optimizer.zero_grad()
im_flatten = im.reshape([bs, -1])
out = mynet.forward(im_flatten)
ce = nn.CrossEntropyLoss()(out, label)
loss = ce
loss.backward()
optimizer.step()
if epoch_id % log_epoch == 0:
train_ca = ClassificationAccuracy(class_num)
after_softmax = F.softmax(out, dim=-1)
predict = torch.argmax(after_softmax, dim=-1)
train_ca.accumulate(label=label, predict=predict)
acc_train = train_ca.get()
writer.add_scalar('loss', loss, epoch_id)
writer.add_scalar('acc_training', acc_train, epoch_id)
with open(os.path.join(model_dir, f'mynet_{epoch_id}.pkl'), 'wb') as f:
torch.save(mynet.state_dict(), f)
with torch.no_grad():
mynet.eval()
r = 0
celoss = 0
test_ca = ClassificationAccuracy(class_num)
for i, (im, label) in enumerate(tqdm(train_dl, desc='testing train')):
r += 1
im = im.to(output_device)
label = label.to(output_device)
bs, c, h, w = im.shape
im_flatten = im.reshape([bs, -1])
out = mynet.forward(im_flatten)
ce = nn.CrossEntropyLoss()(out, label)
after_softmax = F.softmax(out, dim=-1)
predict = torch.argmax(after_softmax, dim=-1)
test_ca.accumulate(label=label, predict=predict)
celoss += ce
celossavg = celoss/r
acc_test = test_ca.get()
writer.add_scalar('train loss', celossavg, epoch_id)
writer.add_scalar('acc_train', acc_test, epoch_id)
r = 0
celoss = 0
test_ca = ClassificationAccuracy(class_num)
for i, (im, label) in enumerate(tqdm(test_dl, desc='testing test')):
r += 1
im = im.to(output_device)
label = label.to(output_device)
bs, c, h, w = im.shape
im_flatten = im.reshape([bs, -1])
out = mynet.forward(im_flatten)
ce = nn.CrossEntropyLoss()(out, label)
after_softmax = F.softmax(out, dim=-1)
predict = torch.argmax(after_softmax, dim=-1)
test_ca.accumulate(label=label, predict=predict)
celoss += ce
celossavg = celoss/r
acc_test = test_ca.get()
writer.add_scalar('test loss', celossavg, epoch_id)
writer.add_scalar('acc_test', acc_test, epoch_id)
writer.close()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。