代码拉取完成,页面将自动刷新
name: "MOBILENET"
# transform_param {
# scale: 0.017
# mirror: false
# crop_size: 224
# mean_value: [103.94,116.78,123.68]
# }
input: "data"
input_dim: 1
input_dim: 3
input_dim: 224
input_dim: 224
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 32
bias_term: false
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv1/bn"
type: "BatchNorm"
bottom: "conv1"
top: "conv1"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv1/scale"
type: "Scale"
bottom: "conv1"
top: "conv1"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "conv2_1/dw"
type: "Convolution"
bottom: "conv1"
top: "conv2_1/dw"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 32
bias_term: false
pad: 1
kernel_size: 3
group: 32
engine: CAFFE
stride: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv2_1/dw/bn"
type: "BatchNorm"
bottom: "conv2_1/dw"
top: "conv2_1/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv2_1/dw/scale"
type: "Scale"
bottom: "conv2_1/dw"
top: "conv2_1/dw"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "relu2_1/dw"
type: "ReLU"
bottom: "conv2_1/dw"
top: "conv2_1/dw"
}
layer {
name: "conv2_1/sep"
type: "Convolution"
bottom: "conv2_1/dw"
top: "conv2_1/sep"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
bias_term: false
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv2_1/sep/bn"
type: "BatchNorm"
bottom: "conv2_1/sep"
top: "conv2_1/sep"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv2_1/sep/scale"
type: "Scale"
bottom: "conv2_1/sep"
top: "conv2_1/sep"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "relu2_1/sep"
type: "ReLU"
bottom: "conv2_1/sep"
top: "conv2_1/sep"
}
layer {
name: "conv2_2/dw"
type: "Convolution"
bottom: "conv2_1/sep"
top: "conv2_2/dw"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
bias_term: false
pad: 1
kernel_size: 3
group: 64
engine: CAFFE
stride: 2
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv2_2/dw/bn"
type: "BatchNorm"
bottom: "conv2_2/dw"
top: "conv2_2/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv2_2/dw/scale"
type: "Scale"
bottom: "conv2_2/dw"
top: "conv2_2/dw"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "relu2_2/dw"
type: "ReLU"
bottom: "conv2_2/dw"
top: "conv2_2/dw"
}
layer {
name: "conv2_2/sep"
type: "Convolution"
bottom: "conv2_2/dw"
top: "conv2_2/sep"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 128
bias_term: false
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv2_2/sep/bn"
type: "BatchNorm"
bottom: "conv2_2/sep"
top: "conv2_2/sep"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv2_2/sep/scale"
type: "Scale"
bottom: "conv2_2/sep"
top: "conv2_2/sep"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "relu2_2/sep"
type: "ReLU"
bottom: "conv2_2/sep"
top: "conv2_2/sep"
}
layer {
name: "conv3_1/dw"
type: "Convolution"
bottom: "conv2_2/sep"
top: "conv3_1/dw"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
group: 128
engine: CAFFE
stride: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv3_1/dw/bn"
type: "BatchNorm"
bottom: "conv3_1/dw"
top: "conv3_1/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv3_1/dw/scale"
type: "Scale"
bottom: "conv3_1/dw"
top: "conv3_1/dw"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "relu3_1/dw"
type: "ReLU"
bottom: "conv3_1/dw"
top: "conv3_1/dw"
}
layer {
name: "conv3_1/sep"
type: "Convolution"
bottom: "conv3_1/dw"
top: "conv3_1/sep"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 128
bias_term: false
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv3_1/sep/bn"
type: "BatchNorm"
bottom: "conv3_1/sep"
top: "conv3_1/sep"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv3_1/sep/scale"
type: "Scale"
bottom: "conv3_1/sep"
top: "conv3_1/sep"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "relu3_1/sep"
type: "ReLU"
bottom: "conv3_1/sep"
top: "conv3_1/sep"
}
layer {
name: "conv3_2/dw"
type: "Convolution"
bottom: "conv3_1/sep"
top: "conv3_2/dw"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
group: 128
engine: CAFFE
stride: 2
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv3_2/dw/bn"
type: "BatchNorm"
bottom: "conv3_2/dw"
top: "conv3_2/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv3_2/dw/scale"
type: "Scale"
bottom: "conv3_2/dw"
top: "conv3_2/dw"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "relu3_2/dw"
type: "ReLU"
bottom: "conv3_2/dw"
top: "conv3_2/dw"
}
layer {
name: "conv3_2/sep"
type: "Convolution"
bottom: "conv3_2/dw"
top: "conv3_2/sep"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 256
bias_term: false
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv3_2/sep/bn"
type: "BatchNorm"
bottom: "conv3_2/sep"
top: "conv3_2/sep"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv3_2/sep/scale"
type: "Scale"
bottom: "conv3_2/sep"
top: "conv3_2/sep"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "relu3_2/sep"
type: "ReLU"
bottom: "conv3_2/sep"
top: "conv3_2/sep"
}
layer {
name: "conv4_1/dw"
type: "Convolution"
bottom: "conv3_2/sep"
top: "conv4_1/dw"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
group: 256
engine: CAFFE
stride: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_1/dw/bn"
type: "BatchNorm"
bottom: "conv4_1/dw"
top: "conv4_1/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv4_1/dw/scale"
type: "Scale"
bottom: "conv4_1/dw"
top: "conv4_1/dw"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "relu4_1/dw"
type: "ReLU"
bottom: "conv4_1/dw"
top: "conv4_1/dw"
}
layer {
name: "conv4_1/sep"
type: "Convolution"
bottom: "conv4_1/dw"
top: "conv4_1/sep"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 256
bias_term: false
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_1/sep/bn"
type: "BatchNorm"
bottom: "conv4_1/sep"
top: "conv4_1/sep"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv4_1/sep/scale"
type: "Scale"
bottom: "conv4_1/sep"
top: "conv4_1/sep"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "relu4_1/sep"
type: "ReLU"
bottom: "conv4_1/sep"
top: "conv4_1/sep"
}
layer {
name: "conv4_2/dw"
type: "Convolution"
bottom: "conv4_1/sep"
top: "conv4_2/dw"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
group: 256
engine: CAFFE
stride: 2
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_2/dw/bn"
type: "BatchNorm"
bottom: "conv4_2/dw"
top: "conv4_2/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv4_2/dw/scale"
type: "Scale"
bottom: "conv4_2/dw"
top: "conv4_2/dw"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "relu4_2/dw"
type: "ReLU"
bottom: "conv4_2/dw"
top: "conv4_2/dw"
}
layer {
name: "conv4_2/sep"
type: "Convolution"
bottom: "conv4_2/dw"
top: "conv4_2/sep"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_2/sep/bn"
type: "BatchNorm"
bottom: "conv4_2/sep"
top: "conv4_2/sep"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv4_2/sep/scale"
type: "Scale"
bottom: "conv4_2/sep"
top: "conv4_2/sep"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "relu4_2/sep"
type: "ReLU"
bottom: "conv4_2/sep"
top: "conv4_2/sep"
}
layer {
name: "conv5_1/dw"
type: "Convolution"
bottom: "conv4_2/sep"
top: "conv5_1/dw"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
stride: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5_1/dw/bn"
type: "BatchNorm"
bottom: "conv5_1/dw"
top: "conv5_1/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv5_1/dw/scale"
type: "Scale"
bottom: "conv5_1/dw"
top: "conv5_1/dw"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "relu5_1/dw"
type: "ReLU"
bottom: "conv5_1/dw"
top: "conv5_1/dw"
}
layer {
name: "conv5_1/sep"
type: "Convolution"
bottom: "conv5_1/dw"
top: "conv5_1/sep"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5_1/sep/bn"
type: "BatchNorm"
bottom: "conv5_1/sep"
top: "conv5_1/sep"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv5_1/sep/scale"
type: "Scale"
bottom: "conv5_1/sep"
top: "conv5_1/sep"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "relu5_1/sep"
type: "ReLU"
bottom: "conv5_1/sep"
top: "conv5_1/sep"
}
layer {
name: "conv5_2/dw"
type: "Convolution"
bottom: "conv5_1/sep"
top: "conv5_2/dw"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
stride: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5_2/dw/bn"
type: "BatchNorm"
bottom: "conv5_2/dw"
top: "conv5_2/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv5_2/dw/scale"
type: "Scale"
bottom: "conv5_2/dw"
top: "conv5_2/dw"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "relu5_2/dw"
type: "ReLU"
bottom: "conv5_2/dw"
top: "conv5_2/dw"
}
layer {
name: "conv5_2/sep"
type: "Convolution"
bottom: "conv5_2/dw"
top: "conv5_2/sep"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5_2/sep/bn"
type: "BatchNorm"
bottom: "conv5_2/sep"
top: "conv5_2/sep"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv5_2/sep/scale"
type: "Scale"
bottom: "conv5_2/sep"
top: "conv5_2/sep"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "relu5_2/sep"
type: "ReLU"
bottom: "conv5_2/sep"
top: "conv5_2/sep"
}
layer {
name: "conv5_3/dw"
type: "Convolution"
bottom: "conv5_2/sep"
top: "conv5_3/dw"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
stride: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5_3/dw/bn"
type: "BatchNorm"
bottom: "conv5_3/dw"
top: "conv5_3/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv5_3/dw/scale"
type: "Scale"
bottom: "conv5_3/dw"
top: "conv5_3/dw"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "relu5_3/dw"
type: "ReLU"
bottom: "conv5_3/dw"
top: "conv5_3/dw"
}
layer {
name: "conv5_3/sep"
type: "Convolution"
bottom: "conv5_3/dw"
top: "conv5_3/sep"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5_3/sep/bn"
type: "BatchNorm"
bottom: "conv5_3/sep"
top: "conv5_3/sep"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv5_3/sep/scale"
type: "Scale"
bottom: "conv5_3/sep"
top: "conv5_3/sep"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "relu5_3/sep"
type: "ReLU"
bottom: "conv5_3/sep"
top: "conv5_3/sep"
}
layer {
name: "conv5_4/dw"
type: "Convolution"
bottom: "conv5_3/sep"
top: "conv5_4/dw"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
stride: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5_4/dw/bn"
type: "BatchNorm"
bottom: "conv5_4/dw"
top: "conv5_4/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv5_4/dw/scale"
type: "Scale"
bottom: "conv5_4/dw"
top: "conv5_4/dw"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "relu5_4/dw"
type: "ReLU"
bottom: "conv5_4/dw"
top: "conv5_4/dw"
}
layer {
name: "conv5_4/sep"
type: "Convolution"
bottom: "conv5_4/dw"
top: "conv5_4/sep"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5_4/sep/bn"
type: "BatchNorm"
bottom: "conv5_4/sep"
top: "conv5_4/sep"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv5_4/sep/scale"
type: "Scale"
bottom: "conv5_4/sep"
top: "conv5_4/sep"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "relu5_4/sep"
type: "ReLU"
bottom: "conv5_4/sep"
top: "conv5_4/sep"
}
layer {
name: "conv5_5/dw"
type: "Convolution"
bottom: "conv5_4/sep"
top: "conv5_5/dw"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
stride: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5_5/dw/bn"
type: "BatchNorm"
bottom: "conv5_5/dw"
top: "conv5_5/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv5_5/dw/scale"
type: "Scale"
bottom: "conv5_5/dw"
top: "conv5_5/dw"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "relu5_5/dw"
type: "ReLU"
bottom: "conv5_5/dw"
top: "conv5_5/dw"
}
layer {
name: "conv5_5/sep"
type: "Convolution"
bottom: "conv5_5/dw"
top: "conv5_5/sep"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5_5/sep/bn"
type: "BatchNorm"
bottom: "conv5_5/sep"
top: "conv5_5/sep"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv5_5/sep/scale"
type: "Scale"
bottom: "conv5_5/sep"
top: "conv5_5/sep"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "relu5_5/sep"
type: "ReLU"
bottom: "conv5_5/sep"
top: "conv5_5/sep"
}
layer {
name: "conv5_6/dw"
type: "Convolution"
bottom: "conv5_5/sep"
top: "conv5_6/dw"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
stride: 2
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5_6/dw/bn"
type: "BatchNorm"
bottom: "conv5_6/dw"
top: "conv5_6/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv5_6/dw/scale"
type: "Scale"
bottom: "conv5_6/dw"
top: "conv5_6/dw"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "relu5_6/dw"
type: "ReLU"
bottom: "conv5_6/dw"
top: "conv5_6/dw"
}
layer {
name: "conv5_6/sep"
type: "Convolution"
bottom: "conv5_6/dw"
top: "conv5_6/sep"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 1024
bias_term: false
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5_6/sep/bn"
type: "BatchNorm"
bottom: "conv5_6/sep"
top: "conv5_6/sep"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv5_6/sep/scale"
type: "Scale"
bottom: "conv5_6/sep"
top: "conv5_6/sep"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "relu5_6/sep"
type: "ReLU"
bottom: "conv5_6/sep"
top: "conv5_6/sep"
}
layer {
name: "conv6/dw"
type: "Convolution"
bottom: "conv5_6/sep"
top: "conv6/dw"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 1024
bias_term: false
pad: 1
kernel_size: 3
group: 1024
engine: CAFFE
stride: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv6/dw/bn"
type: "BatchNorm"
bottom: "conv6/dw"
top: "conv6/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv6/dw/scale"
type: "Scale"
bottom: "conv6/dw"
top: "conv6/dw"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "relu6/dw"
type: "ReLU"
bottom: "conv6/dw"
top: "conv6/dw"
}
layer {
name: "conv6/sep"
type: "Convolution"
bottom: "conv6/dw"
top: "conv6/sep"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 1024
bias_term: false
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv6/sep/bn"
type: "BatchNorm"
bottom: "conv6/sep"
top: "conv6/sep"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv6/sep/scale"
type: "Scale"
bottom: "conv6/sep"
top: "conv6/sep"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "relu6/sep"
type: "ReLU"
bottom: "conv6/sep"
top: "conv6/sep"
}
layer {
name: "pool6"
type: "Pooling"
bottom: "conv6/sep"
top: "pool6"
pooling_param {
pool: AVE
global_pooling: true
}
}
layer {
name: "fc7"
type: "Convolution"
bottom: "pool6"
top: "fc7"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 1000
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "prob"
type: "Softmax"
bottom: "fc7"
top: "prob"
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。