1 Star 0 Fork 61

gzmike/TDXPystock

forked from junmark/TDXPystock 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
南向资金分析工具.py 37.19 KB
一键复制 编辑 原始数据 按行查看 历史
金诺 提交于 2021-04-15 17:37 . 优化:更换代理
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780
'''
author by :newhackerman@163.com
申明:根据此程序分析做出的买卖,本人不承担投资损失,投资有风险,买卖需谨慎!!
1。数据更新(去取库里的最新日期与网上的最新日期比较,较旧更新数据,否提示数据最新)
2。当日持股变动最大前10股票查询
3。开始净买股票查询
4。个股数据展示(输入名称或代码)
5。退出'''
import bs4, datetime
import requests as req
import re, json, time, sys
import prettytable as pt # 格式化成表格输出到html文件
import tushare as ts
import webbrowser # 打开浏览器
import pymysql
import pandas as pd
from lxml import etree
from pyecharts.charts import Bar, Page, Line
from pyecharts import options as opts
import akshare as ak #api 使用:https://akshare-4gize6tod19f2d2e-1252952517.tcloudbaseapp.com/index.html
'''手动安装 talib 去https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib 下载对应的版本“TA_Lib‑0.4.19‑cp37‑cp37m‑win_amd64.whl” 然后 pip3 install TA_Lib‑0.4.19‑cp37‑cp37m‑win_amd64.whl'''
import talib #Technical Analysis Library”, 即技术分析库 是Python金融量化的高级库,涵盖了150多种股票、期货交易软件中常用的技术分析指标,如MACD、RSI、KDJ、动量指标、布林带等等。
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec#分割子图
import mpl_finance as mpf # python中可以用来画出蜡烛图、线图的分析工具,目前已经从matplotlib中独立出来,非常适合用来画K线
from optparse import OptionParser
class southwardAnalysis():
database = 'stock'
tablename = 'southdataanly'
configfile = 'D:/mysqlconfig.json'
pro = None
jsoncontent = None
def __init__(self):
self.jsoncontent = self.get_config()
self.pro = ts.pro_api(self.jsoncontent['tushare'])
def get_config(self):
with open(self.configfile, encoding="utf-8") as f:
jsoncontent = json.load(f)
f.close()
return jsoncontent
def dbconnect(self):
# 读取json格式的配置文件
with open(self.configfile, encoding="utf-8") as f:
jsoncontent = json.load(f)
f.close()
conn = pymysql.connect(jsoncontent['host'], jsoncontent['user'], jsoncontent['password'],
jsoncontent['database'], charset='utf8')
return conn
def get_optparse(self):
parser = OptionParser()
parser.add_option("-1", "--updatedata", type='int', dest="1", help="数据更新")
parser.add_option("-2", "--top10inscrese", type='int', dest="2", help="当日持股变动最大前10股票查询")
parser.add_option("-3", "--northbuy", type='int', dest="3", help="南资开始净买股票查询")
parser.add_option("-4", "--stockview", type='int', dest="4", help="个股南资数据展示(输入名称或代码)")
parser.add_option("-5", "--F10", type='int', dest="5", help="打开个股F0(输入名称代码)")
parser.add_option("-6", "--stockbuybank", type='int', dest="6", help="个股持股比例Top10经纪商查询")
parser.add_option("-0", "--0", type='int', dest="0", help="退出")
parser.add_option("-q", "--quiet",action="store_false", dest="verbose", default=True,help="退出")
(options, args) = parser.parse_args()
return options, args
def get_proxy(self):
url = 'https://ip.jiangxianli.com/api/proxy_ip'
try:
r = req.get(url=url)
except BaseException as b:
count = 0
while True:
count += 1
try:
r = req.get(url=url)
if r.status_code != 200:
continue
else:
break
if count >= 3:
break
except BaseException as c:
continue
jsontext = r.json()['data']
ip = jsontext['ip']
port = jsontext['port']
protocol = jsontext['protocol']
proxy = {str(protocol).lower(): str(protocol).lower() + '://' + ip + ':' + port}
return proxy
#获取上一个交易日
def get_lastDay(self,today):
alldays = self.pro.trade_cal() #得到所有日期,到今年年尾
# print(alldays)
tradingdays = alldays[alldays['is_open'] == 1 ] # 得到所有交易开盘日
# print(tradingdays)
today =today.strftime('%Y%m%d')
if today in tradingdays['cal_date'].values:
tradingdays_list = tradingdays['cal_date'].tolist()
today_index = tradingdays_list.index(today)
last_day = tradingdays_list[int(today_index) - 1] #从列表中前一个数据即为上一个交易日
yesterday=str(last_day)[0:4]+'-'+str(last_day)[4:6]+'-'+str(last_day)[6:8]
return yesterday
# 获取南向数据总页数
def get_pages(self, headers, url, params):
response = req.get(url=url, headers=headers, params=params).text
regx = 'pages:(\d{0,3})'
pages = re.findall(regx, response)[0]
return int(pages)
# 获取最新的数据日期
def get_page_newdate(self):
url = 'http://dcfm.eastmoney.com/em_mutisvcexpandinterface/api/js/get?&type=HSGTTRDT&st=DATE&sr=-1&token=894050c76af8597a853f5b408b759f5d&p=1&ps=1'
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.111 Safari/537.36'}
response = req.get(url=url, headers=headers).text
regx = '(\d{4}-\d{2}-\d{2})'
date = re.findall(regx, response, re.M)[0]
return str(date)
# 写文件
def WriteFile(self, southdatainfos):
data = pd.DataFrame(southdatainfos,
columns=['日期', '股票代码 ', '股票名称 ', '持股数亿', '占比', '收盘价 ', '当日涨跌幅 ', '持股市值亿 ', '一日市值变化亿',
'五日市值变化亿', '十日市值变化亿'])
data = data.to_csv()
southdatafile = '南向资金数据.txt'
with open(southdatafile, 'w', encoding='utf-8') as fw:
fw.write(str(data))
# 获取所有南向资金数据
def getsouth(self):
# url='http://data.eastmoney.com/hsgtcg/lz.html'
url = 'http://dcfm.eastmoney.com/EM_MutiSvcExpandInterface/api/js/get'
headers = {
'Accept': '*/*',
'Accept-Encoding': 'gzip, deflate',
'Accept-Language': 'zh - CN, zh; q = 0.9, en; q = 0.8 ',
'Connection': 'keep-alive',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.111 Safari/537.36',
'Cookie': 'pgv_pvi=3794568192; _qddaz=QD.6ofmf2.j6jr4m.kat8wucp; ct=u_GCXp_V0BUfw6EE3hFHtqMglz3afgkppJcv5vbFImFCEcWBrdbJ1czxMgSRvdgdMHMxnKracqlOZgxC4VNfwrkiwCCnYCNVFUzHMie-NyeUGcc8-NdJwvaXLimNiEt9gsOQO3q161JU2fTSAHZYRo5byr67JKvMwuA_2qSbhls; ut=FobyicMgeV5ghfUPKWOH5wak5fe7PCdYa2maZFrymrOdfN-wAEFtpNp1MzH070EBSmKRLG6vmIcYwEk2SvuUDiGwHB7BHzpaN3m4xMthhPoNqi89FTByaNH4MkRCfEYW4JX960vY0ITlmRY-cPk1PQzTvxCYnVj0Ey0NtYOnUdj24K9O1_tKWeyEDf1k_bIV6hcX360Qn8yYsWTrETZTzGYR7tn62AgnDFAq58DbSa3StLkggc5c7wB94try8c_WEpaHHyl5rA7BBAJZkje3dZ7Q7pZSUWri; pi=3323115305075326%3bc3323115305075326%3b%e8%82%a1%e5%8f%8bjHWZa22110%3bAc4gMB%2bahzpZU8kVvDCm4%2f9QLFcpRepVrDlj4DSAFvQS9L41u5PjbhW1g0ATNFBs2U6jdaiAi0v97coryIUwYaBWyHAUTbi1GDBZdDmkrBugnCGTBDTgPjXURUbrtmze597viYIL2RjHQTBKDzTIQqxuco%2b4pIMvD3B%2f2gF3Z2HSKCRGXGX%2bMcFxewJmIXD8wOJYtqii%3bM4Rnsdjx0lNLDrlCNBv6VhW13wgvkjpsoKd52WM1JsrPCSqUd%2fySTvks6nwUjCNsGby4fYU2Y%2bbjGtRBVly22B%2bqdAhoqGh6XrZIWQGX4LDnpd4CKtckek2Rlq7r9qjcQSdzcprF%2bmmkr9EqKBQVnmt9ppYRhg%3d%3d; uidal=3323115305075326%e8%82%a1%e5%8f%8bjHWZa22110; sid=126018279; _ga=GA1.2.1363410539.1596117007; em_hq_fls=js; AUTH_FUND.EASTMONEY.COM_GSJZ=AUTH*TTJJ*TOKEN; emshistory=%5B%22%E4%BA%BA%E6%B0%94%E6%8E%92%E8%A1%8C%E6%A6%9C%22%2C%22%E6%AF%94%E4%BA%9A%E8%BF%AA%E4%BA%BA%E6%B0%94%E6%8E%92%E5%90%8D%22%2C%22%E5%9F%BA%E9%87%91%E6%8E%92%E8%A1%8C%22%2C%22%E8%BF%913%E4%B8%AA%E6%9C%88%E8%B7%8C%E5%B9%85%E6%9C%80%E5%A4%A7%E7%9A%84%E5%9F%BA%E9%87%91%22%2C%22%E5%85%BB%E8%80%81%E9%87%91%E6%8C%81%E8%82%A1%E5%8A%A8%E5%90%91%E6%9B%9D%E5%85%89%22%2C%22%E5%A4%96%E7%9B%98%E6%9C%9F%E8%B4%A7%22%2C%22A50%22%2C%22%E6%81%92%E7%94%9F%E6%B2%AA%E6%B7%B1%E6%B8%AF%E9%80%9A%E7%BB%86%E5%88%86%E8%A1%8C%E4%B8%9A%E9%BE%99%E5%A4%B4A%22%2C%22%E7%BB%86%E5%88%86%E8%A1%8C%E4%B8%9A%E9%BE%99%E5%A4%B4%22%5D; vtpst=%7c; HAList=d-hk-00288%2Cd-hk-00772%2Cf-0-399006-%u521B%u4E1A%u677F%u6307%2Ca-sz-002008-%u5927%u65CF%u6FC0%u5149%2Ca-sz-002739-%u4E07%u8FBE%u7535%u5F71%2Cf-0-000001-%u4E0A%u8BC1%u6307%u6570%2Cd-hk-00981%2Ca-sz-002082-%u4E07%u90A6%u5FB7%2Ca-sz-300511-%u96EA%u6995%u751F%u7269; st_si=85201197981579; cowCookie=true; waptgshowtime=2021121; qgqp_b_id=3a2c1ce1f45a81a3fa7cc2fbad8e2a24; st_asi=delete; intellpositionL=581px; st_pvi=03400063938128; st_sp=2020-05-23%2013%3A48%3A35; st_inirUrl=https%3A%2F%2Fwww.baidu.com%2Flink; st_sn=60; st_psi=2021012310245852-113300303605-1019447906; intellpositionT=2133.55px'
}
params = {'type': 'HSGTHDSTA',
'token': '894050c76af8597a853f5b408b759f5d',
'filter': '(MARKET=\'S\')',
'st': 'HDDATE',
'sr': -1,
'p': 1,
'ps': 50,
'js': 'var duMsdwGU={pages:(tp),data:(x)}',
'rt': '53908160'}
# 获取北向数据总页数
pages = self.get_pages(headers, url, params)
print('共有数据 %d 页,请稍等......' %pages)
southdatainfos = []
for i in range(1, pages+1, 1): # 南向数据每天只有10页的数据量(取总量)
params = {'type': 'HSGTHDSTA',
'token': '894050c76af8597a853f5b408b759f5d',
'filter': '(MARKET=\'S\')',
'st': 'HDDATE',
'sr': -1,
'p': i,
'ps': 50,
'js': 'var duMsdwGU={pages:(tp),data:(x)}',
'rt': '53908160'}
try:
response = req.get(url=url, headers=headers, params=params)
except BaseException as BE:
print('第%s页 访问异常,重试中!' %i)
time.sleep(2)
count=0
while count<6:
try:
response = req.get(url=url, headers=headers, params=params,proxies=self.get_proxy())
except BaseException as B2:
print(B2)
if response.status_code!=200:
count+1
print('第 %s 次重试获取 %s 页数据异常!' %(count,i))
time.sleep(5)
else:
print('重试成功!!!')
break
bstext = bs4.BeautifulSoup(response.content, 'lxml')
tempdata = bstext.find_all('p')
temp = str(tempdata)
regex = 'data:(.*?)}</p>'
jsondata = str(re.findall(regex, temp, re.M))
# print((jsondata))
data = jsondata.replace('\\r\\n', '', -1).replace('},', '}},', -1).replace('[\'[', '', -1).replace(
']\']', '', -1)
listdata = data.split('},', -1)
# print(listdata)
header = ['日期', '股票代码 ', '股票名称 ', '持股数亿', '占比', '收盘价 ', '当日涨跌幅 ', '持股市值亿 ', '一日市值变化亿', '五日市值变化亿',
'十日市值变化亿']
# print(len(listdata))
'''data: [{
"HDDATE": "2020-12-30T00:00:00", 日期
"HKCODE": "1000145950",
"SCODE": "00700", 代码
"SNAME": "腾讯控股", 名称
"SHAREHOLDSUM": 425931727.0, 持股数
"SHARESRATE": 4.43,占比
"CLOSEPRICE": 559.5,收盘价
"ZDF": 5.4665,当日涨跌幅
"SHAREHOLDPRICE": 238308801256.5, 持股市值
"SHAREHOLDPRICEONE": 19102759903.0,一日市值变化
"SHAREHOLDPRICEFIVE": 2113479276.5,五日市值变化
"SHAREHOLDPRICETEN": 3843934536.5,十日市值变化 '''
southdatainfos.append(listdata)
# print('第%d页下载成功' %i)
time.sleep(1)
print('所有南向数据下载成功!!')
# self.WriteFile(southdatainfos) # 将查询到的数据写一份到本地文件
# 将数据写到文件,以便读取使用,免得每次都要去网上爬,造成大量访问
return southdatainfos
#获取港股日线数据
def getHK_stockQuotes(self,scode):
data = ak.stock_hk_daily(symbol=scode, adjust="qfq") #qfq: 前复权 hfq:后复权
data=pd.DataFrame(data)
return data
# 将下载的数据写数据库
def insertdb(self, southdatainfos):
if len(southdatainfos) == 0:
return
conn = self.dbconnect()
cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)
# 由于每次取的是全量数据,先将表清空
sql1 = 'delete from southdataanly'
cursor.execute(sql1)
conn.commit()
# 执行的sql语句
sql = '''insert into southdataanly (HDDATE,SCODE,SNAME,SHAREHOLDSUM,SHARESRATE,CLOSEPRICE,ZDF,SHAREHOLDPRICE,SHAREHOLDPRICEONE,SHAREHOLDPRICEFIVE,SHAREHOLDPRICETEN) values (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)'''
for datalist in southdatainfos:
for row in datalist: # 依次获取每一行数据
try:
jsdata = json.loads(row)
HDDATE = str(jsdata['HDDATE'])[0:10]
SCODE = jsdata['SCODE']
SNAME = jsdata['SNAME']
SHAREHOLDSUM = format(jsdata['SHAREHOLDSUM'] / 100000000, '.3f')
SHARESRATE = jsdata['SHARESRATE']
CLOSEPRICE = jsdata['CLOSEPRICE']
ZDF = jsdata['ZDF']
SHAREHOLDPRICE = format(jsdata['SHAREHOLDPRICE'] / 100000000, '.3f')
SHAREHOLDPRICEONE = format(jsdata['SHAREHOLDPRICEONE'] / 100000000, '.3f')
SHAREHOLDPRICEFIVE = format(jsdata['SHAREHOLDPRICEFIVE'] / 100000000, '.3f')
SHAREHOLDPRICETEN = format(jsdata['SHAREHOLDPRICETEN'] / 100000000, '.3f')
values = (
HDDATE, SCODE, SNAME, SHAREHOLDSUM, SHARESRATE, CLOSEPRICE, ZDF, SHAREHOLDPRICE,
SHAREHOLDPRICEONE,
SHAREHOLDPRICEFIVE, SHAREHOLDPRICETEN)
cursor.execute(sql, values)
# print(values,sql)
except BaseException as be:
# print(be)
continue
conn.commit()
conn.commit()
conn.close()
# 按条件查询持续比例与持股市值
def selectdb(self, **kwords): # **kwords :表示可以传入多个键值对, *kwords:表示可传入多个参数
conditions = str(kwords).strip('{').strip('}').replace(':', '=', 1).replace('\'', '', 2)
print(conditions)
conn = self.dbconnect()
cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)
# 执行的sql语句
sql = '''select HDDATE,SCODE,SNAME,SHAREHOLDSUM,SHARESRATE,CLOSEPRICE,ZDF,SHAREHOLDPRICE,SHAREHOLDPRICEONE,SHAREHOLDPRICEFIVE,SHAREHOLDPRICETEN from southdataanly '''
sql = sql + 'where ' + conditions + ' order by HDDATE '
# print(sql)
cursor.execute(sql)
resultset = cursor.fetchall()
cursor.close()
conn.close()
if resultset:
return resultset
else:
print('未查询到数据')
return None
# 查询当最后一个交易日净买前10
def Select_top10(self): # **kwords :表示可以传入多个键值对, *kwords:表示可传入多个参数
newdate = self.get_page_newdate()
# outdate = datetime.datetime.strptime(newdate, "%Y-%m-%d")
# yesterday = str((outdate + datetime.timedelta(days=-1)).strftime("%Y-%m-%d"))
sql = 'select * from southdataanly where Hddate=\'' + newdate + '\' order by SHAREHOLDPRICEONE desc limit 10'
# print(sql)
conn = self.dbconnect()
cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)
cursor.execute(sql)
resultset = cursor.fetchall()
# print(resultset)
if resultset:
return resultset
else:
print('数据不是最新,请更新数据!')
# return None
cursor.close()
conn.close()
return resultset
# 查询开始净买入个股
def Select_Netpurchases(self): # **kwords :表示可以传入多个键值对, *kwords:表示可传入多个参数
newdate = self.get_page_newdate()
outdate = datetime.datetime.strptime(newdate, "%Y-%m-%d")
# yesterday = str((outdate + datetime.timedelta(days=-1)).strftime("%Y-%m-%d"))
yesterday=self.get_lastDay(outdate)
print(newdate,yesterday)
sql = 'select * from southdataanly where hddate=\'' + newdate + '\'and SHAREHOLDPRICEONE>1 and SHAREHOLDPRICEFIVE>-2 and zdf >-2 and SCODE in ( select SCODE from southdataanly where hddate=\'' + yesterday + '\' and SHAREHOLDPRICEONE<0 ) order by SHAREHOLDPRICEFIVE desc'
# print(sql)
conn = self.dbconnect()
cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)
# print(sql)
cursor.execute(sql)
resultset = cursor.fetchall()
if resultset:
return resultset
else:
print('无满足条件数据!')
# return None
cursor.close()
conn.close()
return resultset
# 获取A股日线数据
def get_stock_dateData(self, stockcode, start_date, end_date):
if stockcode[0:2] == '600' or stockcode[0:2] == '68':
stockcode = stockcode + '.SH'
else:
stockcode = stockcode + '.SZ'
# 从tushare 获取日线数据
df = self.pro.daily(ts_code=stockcode, start_date=start_date, end_date=end_date)
df = df.sort_values(by=['trade_date'], ascending=True) # 按日期升序
return df
# 将查询到的数据分析后输出到html
def rendertohtml(self, resultset):
page=Page()
if resultset is None:
print('无数据')
return None
header = ['日期', '股票代码 ', '股票名称 ', '持股数亿', '占比', '收盘价 ', '当日涨跌幅 ', '持股市值亿 ', '一日市值变化亿', '五日市值变化亿', '十日市值变化亿']
tb = pt.PrettyTable()
tb.field_names = header # 设置表头
tb.align = 'c' # 对齐方式(c:居中,l居左,r:居右)
c = Line()
x = ['持股占比']
name = ''
HDDATELIST = []
SHAREHOLDSUMlist = [] # 持股数
SHARESRATElist = [] # 持股占比
SHAREHOLD = [] # 持股数量
zdflist = []
SHAREHOLDPRICEONElist = []
SHAREHOLDPRICEFIVElist = []
SHAREHOLDPRICETENlsit = []
# 取出占比数据
for data in resultset:
# print(data)
HDDATE = data['HDDATE']
# HDDATE = datetime.datetime.strptime(HDDATE1, '%Y-%m-%d').strftime('%Y%m%d')
HDDATELIST.append(HDDATE)
SCODE = data['SCODE']
SHAREHOLDSUM = data['SHAREHOLDSUM']
SHAREHOLDSUMlist.append(SHAREHOLDSUM)
SNAME = data['SNAME']
SHARESRATE = data['SHARESRATE']
SHARESRATElist.append(SHARESRATE)
CLOSEPRICE = data['CLOSEPRICE']
ZDF = data['ZDF']
zdflist.append(ZDF)
SHAREHOLDPRICE = format(data['SHAREHOLDPRICE'], '.3f')
SHAREHOLDPRICEONE = format(data['SHAREHOLDPRICEONE'], '.3f')
SHAREHOLDPRICEONElist.append(SHAREHOLDPRICEONE)
SHAREHOLDPRICEFIVE = format(data['SHAREHOLDPRICEFIVE'], '.3f')
SHAREHOLDPRICEFIVElist.append(SHAREHOLDPRICEFIVE)
SHAREHOLDPRICETEN = format(data['SHAREHOLDPRICETEN'], '.3f')
SHAREHOLDPRICETENlsit.append(SHAREHOLDPRICETEN)
tb.add_row(
[HDDATE, SCODE, SNAME, SHAREHOLDSUM, SHARESRATE, CLOSEPRICE, ZDF, SHAREHOLDPRICE, SHAREHOLDPRICEONE,
SHAREHOLDPRICEFIVE, SHAREHOLDPRICETEN])
OUTFILE = '南向资金_' + SNAME + '.html'
# print(SHARESRATE)
x1 = HDDATELIST
y1 = SHARESRATElist # 将占比数据设置为y轴
y2 = SHAREHOLDSUMlist
y3 = zdflist
y4 = SHAREHOLDPRICEONElist
y5 = SHAREHOLDPRICEFIVElist
y6 = SHAREHOLDPRICETENlsit
# y2 = [1000, 300, 500]
# bar = Bar()
# 设置x轴
c.add_xaxis(xaxis_data=x)
c.add_xaxis(xaxis_data=x1)
# 设置y轴
c.add_yaxis(series_name='持股百分比', y_axis=y1)
# c.add_yaxis(series_name='持股数量亿', y_axis=y2)
# c.add_yaxis(series_name='涨跌幅', y_axis=y3)
c.add_yaxis(series_name='1日市值变动亿', y_axis=y4)
c.add_yaxis(series_name='5日市值变动亿', y_axis=y5)
c.add_yaxis(series_name='10日市值变动亿', y_axis=y6)
c.set_global_opts(title_opts=opts.TitleOpts(title='南向资金持股分析: ' + SNAME))
# 生成html文件
# c.render(path=OUTFILE)
page.add(c)
page.render(path=OUTFILE)
# 如果要输出柱图
'''
bar = Bar()
然后将c 换成bar
'''
#获取港股日线数据并画K线图
getstockdata=self.getHK_stockQuotes(SCODE)
if len(getstockdata)<90:
getstockdata=getstockdata
else:
getstockdata=getstockdata.tail(90) #只后90行
# print(getstockdata)
if getstockdata.items == None:
kline=''
else:
# getstockdata['trade_date'] = pd.to_datetime(getstockdata.index) # 设置字段trade_date 为datetime
# getstockdata = getstockdata.set_index('trade_date') # 设置trade_date为索引
index=getstockdata.index.tolist()
# getstockdata.sort_values(by=[getstockdata.index().to_list,'close'],ascending=False)
# 设置四个绘图区域 包括 K线(均线),成交量,MACD
np.seterr(divide='ignore', invalid='ignore') # 忽略warning
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
fig, ax = plt.subplots(figsize=(9, 6)) # 创建fig对象
# 画绘图区域
gs = gridspec.GridSpec(2, 1, left=0.08, bottom=0.15, right=0.99, top=0.96, wspace=None, hspace=0,
height_ratios=[3.5, 1])
# 添加指标
graph_KAV = fig.add_subplot(gs[0, :]) # K线图
graph_VOL = fig.add_subplot(gs[1, :])
# graph_MACD = fig.add_subplot(gs[2, :])
# graph_KDJ = fig.add_subplot(gs[3, :])
mpf.candlestick2_ochl(graph_KAV, getstockdata.open, getstockdata.close, getstockdata.high, getstockdata.low,
width=0.5, colorup='r', colordown='g') # 绘制K线走势
# mpf.plot(getstockdata.iloc[:100],type='candle') # 绘制K线走势
# 绘制移动平均线图
getstockdata['Ma5'] = getstockdata.close.rolling(
window=5).mean() # pd.rolling_mean(df_stockload.close,window=20)
getstockdata['Ma10'] = getstockdata.close.rolling(
window=10).mean() # pd.rolling_mean(df_stockload.close,window=30)
getstockdata['Ma20'] = getstockdata.close.rolling(
window=20).mean()
graph_KAV.plot(np.arange(0, len(index)), getstockdata['Ma5'], 'black', label='M5', lw=1.0)
graph_KAV.plot(np.arange(0, len(index)), getstockdata['Ma10'], 'green', label='M10', lw=1.0)
graph_KAV.plot(np.arange(0, len(index)), getstockdata['Ma20'], 'blue', label='M20', lw=1.0)
# 添加网格
graph_KAV.grid()
graph_KAV.legend(loc='best')
graph_KAV.set_title(SCODE + ' ' + SNAME + '(日线)')
graph_KAV.set_ylabel(u"价格")
graph_KAV.set_xlim(0, len(index)) # 设置一下x轴的范围
# 绘制成交量图
graph_VOL.bar(np.arange(0, len(index)), getstockdata.volume,
color=['g' if getstockdata.open[x] > getstockdata.close[x] else 'r' for x in
range(0, len(index))])
graph_VOL.set_ylabel(u"成交量")
graph_VOL.set_xlim(0, len(index)) # 设置一下x轴的范围
graph_VOL.set_xticks(range(0, len(index), 1)) # X轴刻度设定 每1天标一个日期
# X-轴每个ticker标签都向右倾斜45度
for label in graph_KAV.xaxis.get_ticklabels():
label.set_visible(False)
for label in graph_VOL.xaxis.get_ticklabels():
label.set_visible(True)
label.set_fontsize(10)
plt.savefig('./Kline.jpg')
kline = '''<img src=./Kline.jpg />'''
# 将数据也输出到文件
s = tb.get_html_string()
with open(OUTFILE, 'a+', encoding='utf-8') as fw:
fw.write(kline)
fw.write(s)
fw.close()
webbrowser.open(OUTFILE) # 调用浏览器打开文件
# 获取表中最新的日期
def getdb_maxdate(self):
sql = 'select max(HDDATE) as "HDDATE" from southdataanly '
conn = conn = self.dbconnect()
cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)
cursor.execute(sql)
result = cursor.fetchall()
# print(result)
for data in result:
data1 = data['HDDATE']
cursor.close()
conn.close()
if data1 is None:
print('表中无数据,请更新数据')
return None
return str(data1)
# 比较数据是否为最新的
def compare_Date(self):
isnewdate = True
pagedate = self.get_page_newdate()
dbdate = self.getdb_maxdate()
if dbdate is None:
return False
if pagedate > dbdate:
isnewdate = False
else:
isnewdate = True
return isnewdate
# 格式化成table
def SouthdataFormat(self, resultset):
# print(resultset)
if resultset is None:
print('无数据')
return None
header = ['日期', '股票代码 ', '股票名称 ', '持股数亿', '占比', '收盘价 ', '当日涨跌幅 ', '持股市值亿 ', '一日市值变化亿', '五日市值变化亿', '十日市值变化亿']
tb = pt.PrettyTable()
tb.field_names = header # 设置表头
tb.align = 'c' # 对齐方式(c:居中,l居左,r:居右)
for data in resultset:
HDDATE = data['HDDATE']
SCODE = data['SCODE']
SHAREHOLDSUM = data['SHAREHOLDSUM']
SNAME = data['SNAME']
SHARESRATE = data['SHARESRATE']
CLOSEPRICE = data['CLOSEPRICE']
ZDF = data['ZDF']
SHAREHOLDPRICE = format(data['SHAREHOLDPRICE'], '.3f')
SHAREHOLDPRICEONE = format(data['SHAREHOLDPRICEONE'], '.3f')
SHAREHOLDPRICEFIVE = format(data['SHAREHOLDPRICEFIVE'], '.3f')
SHAREHOLDPRICETEN = format(data['SHAREHOLDPRICETEN'], '.3f')
tb.add_row(
[HDDATE, SCODE, SNAME, SHAREHOLDSUM, SHARESRATE, CLOSEPRICE, ZDF, SHAREHOLDPRICE, SHAREHOLDPRICEONE,
SHAREHOLDPRICEFIVE, SHAREHOLDPRICETEN])
print(tb.get_string())
#打开F0
def openF10(self,code):
url = 'https://finance.futunn.com/?code=%s&market=hk&skin=1&clienttype=10&direction=1#/profile'
if code.isdigit():
url=url %code
webbrowser.open(url)
else:
pass
#获取经纪商持股数据
def get_participant(self,code, **defineDate):
url = 'https://sc.hkexnews.hk/TuniS/www.hkexnews.hk/sdw/search/searchsdw_c.aspx'
today = time.strftime('%Y-%m-%d', time.localtime())
today = datetime.datetime.strptime(today, "%Y-%m-%d")
if defineDate:
yesterday = defineDate['date']
else:
yesterday =self.get_lastDay(today)
print(today, yesterday)
tb = pt.PrettyTable()
tb.align = 'l' # 对齐方式(c:居中,l居左,r:居右)
page = Page()
c = Line()
data = {
'today': today,
'__EVENTTARGET': 'btnSearch',
'__EVENTARGUMENT': '',
'txtShareholdingDate': yesterday,
'txtStockCode': code,
'txtStockName': '',
'txtParticipantID': '',
'txtParticipantName': ''
}
requst = req.session()
response = requst.post(url=url, data=data)
tree = etree.HTML(response.text)
code = code
txtStockName = tree.xpath('//input[@name="txtStockName"]/@value')
if txtStockName ==[]:
print('无数据,请确认此股票是否存在')
return
txtStockName = txtStockName[0]
print(code, txtStockName)
head = tree.xpath(
'//div[@id="pnlResultNormal"]/div[@class="search-details-table-container table-mobile-list-container"]//table/thead/tr')
header = []
for line in head:
participantid = line.xpath('./th[@data-column-class="col-participant-id"]/text()')[0] # 机构编号
participantname = line.xpath('./th[@data-column-class="col-participant-name"]/text()')[0] # 机构名称
address = line.xpath('./th[@data-column-class="col-address"]/text()')[0] # 机构地址
shareholding = line.xpath('./th[@data-column-class="col-shareholding"]/text()')[0] # 持股数量
shareholding_percent = \
str(line.xpath('./th[@data-column-class="col-shareholding-percent"]/text()')[0]).split('/')[-1][2:].strip() # 持股百分比
header.append(participantid)
header.append(participantname)
# header.append(address)
header.append(shareholding)
header.append(shareholding_percent)
data = []
tempdata = tree.xpath(
'//div[@id="pnlResultNormal"]/div[@class="search-details-table-container table-mobile-list-container"]//table/tbody//tr')
i = 0
for line in tempdata:
i += 1
if i == 10:
break
else:
participantid = line.xpath('./td[@class="col-participant-id"]/div[2]/text()')[0]
participantname = line.xpath('./td[@class="col-participant-name"]/div[2]/text()')[0]
# address=line.xpath('./td[@class="col-address"]/div[2]/text()')[0]
shareholding = line.xpath('./td[@class="col-shareholding text-right"]/div[2]/text()')[0]
shareholding_percent = line.xpath('./td[@class="col-shareholding-percent text-right"]/div[2]/text()')[0]
dict = {'机构编号': participantid, '机构名称': participantname, '持股数量': shareholding, '持股百分比': shareholding_percent}
tb.add_row([participantid, participantname, shareholding, shareholding_percent])
data.append(dict)
pdf = pd.DataFrame(data)
tb.field_names = header # 设置表头
print(tb.get_string())
# print(pdf)
return pdf
def mainMenu(self):
print(
'*****************************************************************************************************\r\n')
print('\t 1。数据更新')
print('\t 2。当日持股变动最大前10股票查询')
print('\t 3。南资开始净买股票查询 ')
print('\t 4。个股南资数据展示(输入名称或代码)')
print('\t 5。个股F10')
print('\t 6。个股持股比例Top10经纪商查询')
print('\t 0。退出\r\n')
print(
'*****************************************************************************************************\r\n')
#主循环入口
def main(self):
SNAME = '建设银行'
SNAME = '小米集团-W'
options,args=self.get_optparse()
var = sys.argv # 可以接收从外部传入参数
while True:
if len(var) > 1:
var1 = str(var[1]).strip(' ')
if var1=='1':
isnew = self.compare_Date() # 判断是否要更新数据
if isnew:
print('数据已是最新')
break
else:
print('数据更新中!')
pagedata = self.getsouth()
self.insertdb(pagedata)
print('数据更新成功!!!')
break
SNAME = var[1]
if SNAME.isdigit():
resultset = self.selectdb(SCODE=SNAME) # 按代码查询南向资金占比
self.SouthdataFormat(resultset)
self.rendertohtml(resultset)
break
else:
resultset = self.selectdb(SNAME=SNAME) # 按名称查询南向资金占比
self.SouthdataFormat(resultset)
self.rendertohtml(resultset)
break
else:
self.mainMenu() #显示主菜单
try:
choise = int(input('请输入:'))
except BaseException as BE:
choise = int(input('输入错误,请重新输入 :'))
if choise in range(7):
if choise == 1:
isnew = self.compare_Date() # 判断是否要更新数据
if isnew:
print('数据已是最新')
else:
print('数据更新中!')
pagedata = self.getsouth()
self.insertdb(pagedata)
print('数据更新成功!!!')
elif choise == 2:
resultset = self.Select_top10()
self.SouthdataFormat(resultset)
elif choise == 3:
resultset = self.Select_Netpurchases() # 查询南资开始净买的股票
self.SouthdataFormat(resultset)
elif choise == 4:
SNAME = str(input('请输入股票名称或代码:\t')).strip()
if SNAME =='':
SNAME = str(input('请输入股票名称或代码:\t')).strip()
if SNAME.isdigit():
resultset = self.selectdb(SCODE=SNAME) # 按代码查询南向资金占比
self.SouthdataFormat(resultset)
else:
if SNAME=='':
continue
resultset = self.selectdb(SNAME=SNAME) # 按名称查询南向资金占比
self.SouthdataFormat(resultset)
self.rendertohtml(resultset)
elif choise == 5:
SNAME = str(input('请输入股票代码:\t'))
self.openF10(SNAME)
elif choise == 6:
hkcode = str(input('请输入股票代码:\t'))
Hddate = input('请输入要查询的数据日期,E.g: 2021-02-10 默认为最新 \t')
if Hddate:
try:
if ":" in Hddate:
time.strptime(Hddate, "%Y-%m-%d")
else:
time.strptime(Hddate, "%Y-%m-%d")
except:
print('日期输入错误!')
continue
self.get_participant( hkcode, date=Hddate)
else:
self.get_participant(hkcode)
elif choise == 0 or choise=='quit' or choise=='exit' or choise=='q':
exit(0)
else:
print('输入错误\n')
choise = int(input('请输入:'))
if __name__ == '__main__':
Analys = southwardAnalysis()
Analys.main()
# data=Analys.getHK_stockQuotes('00981')
# print(data.sort_values(data.index),'desc')
'''
CREATE TABLE IF NOT EXISTS `southdataanly`(
HDDATE date,
SCODE varchar(8),
SNAME varchar(20),
SHAREHOLDSUM float,
SHARESRATE float,
CLOSEPRICE float,
ZDF float,
SHAREHOLDPRICE float,
SHAREHOLDPRICEONE float,
SHAREHOLDPRICEFIVE float,
SHAREHOLDPRICETEN float
)ENGINE=InnoDB DEFAULT CHARSET=utf8;
create index southdataanlycode on southdataanly(SCODE);
create index southdataanlyHdDate on southdataanly(HDDATE);
create index southdataanlySName on southdataanly(SNAME);
'''
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/gzmike/TDXPystock.git
git@gitee.com:gzmike/TDXPystock.git
gzmike
TDXPystock
TDXPystock
master

搜索帮助