1 Star 0 Fork 0

gvraky/yolo_compression

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
test_pascal.py 6.82 KB
一键复制 编辑 原始数据 按行查看 历史
import os
import argparse
from sys import platform
from models import * # set ONNX_EXPORT in models.py
from utils.datasets import *
from utils.utils import *
from utils.pruning import create_mask_LTH, apply_mask_LTH
def detect(save_img=False):
img_size = (320, 192) if ONNX_EXPORT else opt.img_size # (320, 192) or (416, 256) or (608, 352) for (height, width)
out, source, weights, view_img = opt.output, opt.source, opt.weights, opt.view_img
# Initialize
device = torch_utils.select_device(device='cpu' if ONNX_EXPORT else opt.device)
# Get names and colors
names = load_classes(opt.names)
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
################
# Create files #
################
if os.path.exists(out):
shutil.rmtree(out) # delete output folder
os.makedirs(out) # make new output folder
files = []
for f in names:
result_file = open(out+f'comp3_det_test_{f}.txt', 'w')
files.append(result_file)
# Initialize model
if 'soft' in opt.cfg:
model = SoftDarknet(cfg=opt.cfg).to(device)
model.ticket = True
else:
model = Darknet(cfg=opt.cfg).to(device)
# Load weights
attempt_download(weights)
if weights.endswith('.pt'): # pytorch format
model.load_state_dict(torch.load(weights, map_location=device)['model'])
if opt.mask or opt.mask_weight:
mask = create_mask_LTH(model)
if opt.mask: mask.load_state_dict(torch.load(weights, map_location=device)['mask'])
else: mask.load_state_dict(torch.load(opt.mask_weight, map_location=device))
apply_mask_LTH(model, mask)
del mask
else: # darknet format
load_darknet_weights(model, weights)
# Second-stage classifier
classify = False
if classify:
modelc = torch_utils.load_classifier(name='resnet101', n=2) # initialize
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']) # load weights
modelc.to(device).eval()
# Eval mode
model.to(device).eval()
# Export mode
if ONNX_EXPORT:
model.fuse()
img = torch.zeros((1, 3) + img_size) # (1, 3, 320, 192)
f = opt.weights.replace(opt.weights.split('.')[-1], 'onnx') # *.onnx filename
torch.onnx.export(model, img, f, verbose=False, opset_version=11)
# Validate exported model
import onnx
model = onnx.load(f) # Load the ONNX model
onnx.checker.check_model(model) # Check that the IR is well formed
print(onnx.helper.printable_graph(model.graph)) # Print a human readable representation of the graph
return
# Set Dataloader
dataset = LoadImages(source, img_size=img_size)
# Run inference
t0 = time.time()
for path, img, im0s, _ in dataset:
ID = path.split(os.sep)[-1].split('.')[0]
t = time.time()
img = torch.from_numpy(img).to(device)
img = img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
pred = model(img)[0]
# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
# Apply Classifier
if classify:
pred = apply_classifier(pred, modelc, img, im0s)
# Process detections
for i, det in enumerate(pred): # detections per image
p, s, im0 = path, '', im0s
save_path = str(Path(out) / Path(p).name)
s += '%gx%g ' % img.shape[2:] # print string
if det is not None and len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += '%g %ss, ' % (n, names[int(c)]) # add to string
# Write results
for *xyxy, conf, cls in det:
print(ID, conf.item(), int(xyxy[0].item()), int(xyxy[1].item()), int(xyxy[2].item()), int(xyxy[3].item()), sep=' ', file=files[int(cls)])
if save_img or view_img: # Add bbox to image
label = '%s %.2f' % (names[int(cls)], conf)
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)])
# Print time (inference + NMS)
print('%sDone. (%.3fs)' % (s, time.time() - t))
# Stream results
if view_img:
cv2.imshow(p, im0)
if cv2.waitKey(1) == ord('q'): # q to quit
raise StopIteration
# Save results (image with detections)
if save_img:
if dataset.mode == 'images':
cv2.imwrite(save_path, im0)
if save_img:
print('Results saved to %s' % os.getcwd() + os.sep + out)
if platform == 'darwin': # MacOS
os.system('open ' + out + ' ' + save_path)
print('Done. (%.3fs)' % (time.time() - t0))
for f in files: f.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, default='cfg/voc_yolov3.cfg', help='*.cfg path')
parser.add_argument('--names', type=str, default='data/voc.names', help='*.names path')
parser.add_argument('--weights', type=str, default='weights/voc_yolov3/size-multi_scale/2020_04_05/10_02_02/best.pt', help='path to weights file')
parser.add_argument('--mask', action='store_true', help='wheter has a mask inside the checkpoint')
parser.add_argument('--mask_weight', type=str, default=None, help='wheter mask is another checkpoint')
parser.add_argument('--source', type=str, default='../PASCALVOC2012/images/test/', help='source') # input file/folder, 0 for webcam
parser.add_argument('--output', type=str, default=None, required=True, help='output folder') # output folder
parser.add_argument('--img-size', type=int, default=416, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.3, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.6, help='IOU threshold for NMS')
parser.add_argument('--device', default='', help='device id (i.e. 0 or 0,1) or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
opt = parser.parse_args()
print(opt)
with torch.no_grad():
detect()
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/gvraky/yolo_compression.git
git@gitee.com:gvraky/yolo_compression.git
gvraky
yolo_compression
yolo_compression
master

搜索帮助