1 Star 0 Fork 0

善若水/uie_pytorch

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
tokenizer.py 27.36 KB
一键复制 编辑 原始数据 按行查看 历史
嘿嘿哟哟 提交于 2023-02-17 16:48 . 更新一下tokenizer库
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684
import collections
import json
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from transformers import SLOW_TO_FAST_CONVERTERS, PreTrainedTokenizerFast, requires_backends
from transformers.convert_slow_tokenizer import Converter, SentencePieceExtractor
try:
from fast_tokenizer import Tokenizer, normalizers, pretokenizers, postprocessors
from fast_tokenizer.models import BPE, Unigram
except ImportError as e:
print('fast_tokenizer 未安装! pip install fast-tokenizer-python==1.0.0')
print(e)
from faster_tokenizer import Tokenizer, normalizers, pretokenizers, postprocessors
from faster_tokenizer.models import BPE, Unigram
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
from transformers.utils import SPIECE_UNDERLINE
from utils import logger
VOCAB_FILES_NAMES = {
"sentencepiece_model_file": "sentencepiece.bpe.model",
"vocab_file": "vocab.txt",
}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"ernie-m-base": "https://bj.bcebos.com/paddlenlp/models/transformers/ernie_m/ernie_m.vocab.txt",
"ernie-m-large": "https://bj.bcebos.com/paddlenlp/models/transformers/ernie_m/ernie_m.vocab.txt"
},
"sentencepiece_model_file": {
"ernie-m-base": "https://bj.bcebos.com/paddlenlp/models/transformers/ernie_m/ernie_m.sentencepiece.bpe.model",
"ernie-m-large": "https://bj.bcebos.com/paddlenlp/models/transformers/ernie_m/ernie_m.sentencepiece.bpe.model",
}
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"ernie-m-base": 514,
"ernie-m-large": 514,
}
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
with open(vocab_file, "r", encoding="utf-8") as reader:
tokens = reader.readlines()
for index, token in enumerate(tokens):
token = token.rstrip("\n")
if token in vocab:
print(f'{token} 重复!')
vocab[token] = index
return vocab
class ErnieMTokenizer(PreTrainedTokenizer):
"""
Construct an Erine-M tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
File containing the vocabulary.
sentencepiece_model_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that
contains the vocabulary necessary to instantiate a tokenizer.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether to lowercase the input when tokenizing.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"<sep>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"<cls>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
sp_model_kwargs (`dict`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
Attributes:
sp_model (`SentencePieceProcessor`):
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
padding_side = "left"
def __init__(
self,
vocab_file,
sentencepiece_model_file,
do_lower_case=False,
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
sp_model_kwargs: Optional[Dict[str, Any]] = None,
**kwargs
) -> None:
# Mask token behave like a normal word, i.e. include the space before it
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(
mask_token, str) else mask_token
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=do_lower_case,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
sp_model_kwargs=self.sp_model_kwargs,
**kwargs,
)
self.do_lower_case = do_lower_case
self.sentencepiece_model_file = sentencepiece_model_file
if not os.path.isfile(sentencepiece_model_file):
raise ValueError(
f"Can't find a vocabulary file at path '{sentencepiece_model_file}'. To load the vocabulary from a Google pretrained "
"model use `tokenizer = ErnieMTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(sentencepiece_model_file)
if not os.path.isfile(vocab_file):
raise ValueError(
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained "
"model use `tokenizer = ErnieMTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
self.vocab = load_vocab(vocab_file)
self.ids_to_tokens = collections.OrderedDict(
[(ids, tok) for tok, ids in self.vocab.items()])
self.SP_CHAR_MAPPING = {}
for ch in range(65281, 65375):
if ch in [ord(u'~')]:
self.SP_CHAR_MAPPING[chr(ch)] = chr(ch)
continue
self.SP_CHAR_MAPPING[chr(ch)] = chr(ch - 65248)
@property
def vocab_size(self):
return len(self.sp_model)
def get_vocab(self):
return dict(self.vocab, **self.added_tokens_encoder)
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
return state
def __setstate__(self, d):
self.__dict__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def preprocess_text(self, inputs):
outputs = ''.join((self.SP_CHAR_MAPPING.get(c, c) for c in inputs))
outputs = outputs.replace("``", '"').replace("''", '"')
outputs = unicodedata.normalize("NFKD", outputs)
outputs = "".join(
[c for c in outputs if not unicodedata.combining(c)])
if self.do_lower_case:
outputs = outputs.lower()
return outputs
def _tokenize(self, text: str) -> List[str]:
"""Tokenize a string."""
text = self.preprocess_text(text)
pieces = self.sp_model.EncodeAsPieces(text)
new_pieces = []
for piece in pieces:
if piece == SPIECE_UNDERLINE:
continue
lst_i = 0
for i, c in enumerate(piece):
if c == SPIECE_UNDERLINE:
continue
if self.is_ch_char(c) or self.is_punct(c):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i])
new_pieces.append(c)
lst_i = i + 1
elif c.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i])
lst_i = i
elif not c.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i])
lst_i = i
if len(piece) > lst_i:
new_pieces.append(piece[lst_i:])
return new_pieces
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.vocab.get(token, self.vocab.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.ids_to_tokens.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (strings for sub-words) in a single string."""
out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
return out_string
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. An Erine-M sequence has the following format:
- single sequence: `X <sep> <cls>`
- pair of sequences: `A <sep> B <sep> <cls>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return cls + token_ids_0 + sep
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. An Erine-M
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
if token_ids_1 is None:
# [CLS] X [SEP]
return (len(token_ids_0) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(token_ids_0) + 1) + [1] * (len(token_ids_1) + 3)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(
f"Vocabulary path ({save_directory}) should be a directory")
return
sentencepiece_model_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") +
VOCAB_FILES_NAMES["sentencepiece_model_file"]
)
vocab_file = (filename_prefix +
"-" if filename_prefix else "") + save_directory
if os.path.abspath(self.vocab_file) != os.path.abspath(sentencepiece_model_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, sentencepiece_model_file)
elif not os.path.isfile(self.vocab_file):
with open(sentencepiece_model_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
index = 0
with open(vocab_file, "w", encoding="utf-8") as writer:
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!"
)
index = token_index
writer.write(token + "\n")
index += 1
return vocab_file, sentencepiece_model_file
def is_ch_char(self, char):
"""
is_ch_char
"""
if u'\u4e00' <= char <= u'\u9fff':
return True
return False
def is_alpha(self, char):
"""
is_alpha
"""
if 'a' <= char <= 'z':
return True
if 'A' <= char <= 'Z':
return True
return False
def is_punct(self, char):
"""
is_punct
"""
if char in u",;:.?!~,;:。?!《》【】":
return True
return False
def is_whitespace(self, char):
"""
is whitespace
"""
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(char) == 1:
cat = unicodedata.category(char)
if cat == "Zs":
return True
return False
class ErnieMTokenizerFast(PreTrainedTokenizerFast):
r"""
Construct a "fast" ERNIE-M tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece.
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
File containing the vocabulary.
sentencepiece_model_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that
contains the vocabulary necessary to instantiate a tokenizer.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
clean_text (`bool`, *optional*, defaults to `True`):
Whether or not to clean the text before tokenization by removing any control characters and replacing all
whitespaces by the classic one.
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original ERNIE-M).
wordpieces_prefix (`str`, *optional*, defaults to `"##"`):
The prefix for subwords.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
slow_tokenizer_class = ErnieMTokenizer
def __init__(
self,
vocab_file=None,
sentencepiece_model_file=None,
tokenizer_file=None,
do_lower_case=True,
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
tokenize_chinese_chars=True,
strip_accents=None,
**kwargs
):
super().__init__(
vocab_file,
sentencepiece_model_file,
tokenizer_file=tokenizer_file,
do_lower_case=do_lower_case,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
**kwargs,
)
normalizer_state = json.loads(
self.backend_tokenizer.normalizer.__getstate__())
if (
normalizer_state.get("lowercase", do_lower_case) != do_lower_case
or normalizer_state.get("strip_accents", strip_accents) != strip_accents
or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars
):
normalizer_class = getattr(
normalizers, normalizer_state.pop("type"))
normalizer_state["lowercase"] = do_lower_case
normalizer_state["strip_accents"] = strip_accents
normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars
self.backend_tokenizer.normalizer = normalizer_class(
**normalizer_state)
self.do_lower_case = do_lower_case
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A ERNIE-M sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
if token_ids_1:
output += [self.sep_token_id] + token_ids_1 + [self.sep_token_id]
return output
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A ERNIE-M sequence
pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
if token_ids_1 is None:
return (len(token_ids_0) + 2) * [0]
return [0] * (len(token_ids_0) + 1) + [1] * (len(token_ids_1) + 3)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(
save_directory, name=filename_prefix)
return tuple(files)
class TokenizerProxy:
def __init__(self, tokenizer):
self._tokenizer = tokenizer
self.no_padding = self._tokenizer.disable_padding
self.no_truncation = self._tokenizer.disable_truncation
def __getattr__(self, __name: str) -> Any:
return getattr(self._tokenizer, __name)
class ErnieMConverter(Converter):
def __init__(self, *args):
requires_backends(self, "protobuf")
super().__init__(*args)
from transformers.utils import sentencepiece_model_pb2 as model_pb2
m = model_pb2.ModelProto()
with open(self.original_tokenizer.sentencepiece_model_file, "rb") as f:
m.ParseFromString(f.read())
self.proto = m
def vocab(self, proto):
word_score_dict = {}
for piece in proto.pieces:
word_score_dict[piece.piece] = piece.score
vocab_list = [None] * len(self.original_tokenizer.ids_to_tokens)
original_vocab = self.original_tokenizer.vocab
for _token, _id in original_vocab.items():
if _token in word_score_dict:
vocab_list[_id] = (_token, word_score_dict[_token])
else:
vocab_list[_id] = (_token, 0.0)
return vocab_list
def post_processor(self):
'''
An ERNIE-M sequence has the following format:
- single sequence: ``[CLS] X [SEP]``
- pair of sequences: ``[CLS] A [SEP] [SEP] B [SEP]``
'''
return postprocessors.TemplatePostProcessor(
single="[CLS]:0 $A:0 [SEP]:0",
pair="[CLS]:0 $A:0 [SEP]:0 [SEP]:1 $B:1 [SEP]:1",
special_tokens=[
("[CLS]",
self.original_tokenizer.convert_tokens_to_ids("[CLS]")),
("[SEP]",
self.original_tokenizer.convert_tokens_to_ids("[SEP]")),
],
)
def normalizer(self, proto):
list_normalizers = []
precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap
list_normalizers.append(
normalizers.PrecompiledNormalizer(precompiled_charsmap))
return normalizers.SequenceNormalizer(list_normalizers)
def unk_id(self, proto):
return self.original_tokenizer.convert_tokens_to_ids(
str(self.original_tokenizer.unk_token))
def pre_tokenizer(self, replacement, add_prefix_space):
return pretokenizers.SequencePreTokenizer([
pretokenizers.WhitespacePreTokenizer(),
pretokenizers.MetaSpacePreTokenizer(
replacement=replacement, add_prefix_space=add_prefix_space)
])
def converted(self) -> Tokenizer:
tokenizer = self.tokenizer(self.proto)
SPLICE_UNDERLINE = SPIECE_UNDERLINE
tokenizer.model.set_filter_token(SPLICE_UNDERLINE)
chinese_chars = r"\x{4e00}-\x{9fff}"
punc_chars = r",;:.?!~,;:。?!《》【】"
digits = r"0-9"
tokenizer.model.set_split_rule(
fr"[{chinese_chars}]|[{punc_chars}]|[{digits}]+|[^{chinese_chars}{punc_chars}{digits}]+"
)
# Tokenizer assemble
tokenizer.normalizer = self.normalizer(self.proto)
replacement = "▁"
add_prefix_space = True
tokenizer.pretokenizer = self.pre_tokenizer(
replacement, add_prefix_space)
post_processor = self.post_processor()
if post_processor:
tokenizer.postprocessor = post_processor
tokenizer = TokenizerProxy(tokenizer)
return tokenizer
def tokenizer(self, proto):
model_type = proto.trainer_spec.model_type
vocab = self.vocab(proto)
unk_id = self.unk_id(proto)
if model_type == 1:
tokenizer = Tokenizer(Unigram(vocab, unk_id))
elif model_type == 2:
_, merges = SentencePieceExtractor(
self.original_tokenizer.sentencepiece_model_file).extract()
bpe_vocab = {word: i for i, (word, score) in enumerate(vocab)}
tokenizer = Tokenizer(
BPE(
bpe_vocab,
merges,
unk_token=proto.trainer_spec.unk_piece,
fuse_unk=True,
)
)
else:
raise Exception(
"You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
)
return tokenizer
SLOW_TO_FAST_CONVERTERS["ErnieMTokenizer"] = ErnieMConverter
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/good-as-water/uie_pytorch.git
git@gitee.com:good-as-water/uie_pytorch.git
good-as-water
uie_pytorch
uie_pytorch
main

搜索帮助