代码拉取完成,页面将自动刷新
# Copyright (c) 2022 Heiheiyoyo. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import shutil
import sys
import time
import os
import torch
from torch.utils.data import DataLoader
from transformers import BertTokenizerFast
from utils import IEDataset, logger, tqdm
from model import UIE
from evaluate import evaluate
from utils import set_seed, SpanEvaluator, EarlyStopping, logging_redirect_tqdm
def do_train():
set_seed(args.seed)
show_bar = True
tokenizer = BertTokenizerFast.from_pretrained(args.model)
model = UIE.from_pretrained(args.model)
if args.device == 'gpu':
model = model.cuda()
train_ds = IEDataset(args.train_path, tokenizer=tokenizer,
max_seq_len=args.max_seq_len)
dev_ds = IEDataset(args.dev_path, tokenizer=tokenizer,
max_seq_len=args.max_seq_len)
train_data_loader = DataLoader(
train_ds, batch_size=args.batch_size, shuffle=True)
dev_data_loader = DataLoader(
dev_ds, batch_size=args.batch_size, shuffle=True)
optimizer = torch.optim.AdamW(
lr=args.learning_rate, params=model.parameters())
criterion = torch.nn.functional.binary_cross_entropy
metric = SpanEvaluator()
if args.early_stopping:
early_stopping_save_dir = os.path.join(
args.save_dir, "early_stopping")
if not os.path.exists(early_stopping_save_dir):
os.makedirs(early_stopping_save_dir)
if show_bar:
def trace_func(*args, **kwargs):
with logging_redirect_tqdm([logger.logger]):
logger.info(*args, **kwargs)
else:
trace_func = logger.info
early_stopping = EarlyStopping(
patience=7, verbose=True, trace_func=trace_func,
save_dir=early_stopping_save_dir)
loss_list = []
loss_sum = 0
loss_num = 0
global_step = 0
best_step = 0
best_f1 = 0
tic_train = time.time()
epoch_iterator = range(1, args.num_epochs + 1)
if show_bar:
train_postfix_info = {'loss': 'unknown'}
epoch_iterator = tqdm(
epoch_iterator, desc='Training', unit='epoch')
for epoch in epoch_iterator:
train_data_iterator = train_data_loader
if show_bar:
train_data_iterator = tqdm(train_data_iterator,
desc=f'Training Epoch {epoch}', unit='batch')
train_data_iterator.set_postfix(train_postfix_info)
for batch in train_data_iterator:
if show_bar:
epoch_iterator.refresh()
input_ids, token_type_ids, att_mask, start_ids, end_ids = batch
if args.device == 'gpu':
input_ids = input_ids.cuda()
token_type_ids = token_type_ids.cuda()
att_mask = att_mask.cuda()
start_ids = start_ids.cuda()
end_ids = end_ids.cuda()
outputs = model(input_ids=input_ids,
token_type_ids=token_type_ids,
attention_mask=att_mask)
start_prob, end_prob = outputs[0], outputs[1]
start_ids = start_ids.type(torch.float32)
end_ids = end_ids.type(torch.float32)
loss_start = criterion(start_prob, start_ids)
loss_end = criterion(end_prob, end_ids)
loss = (loss_start + loss_end) / 2.0
loss.backward()
optimizer.step()
optimizer.zero_grad()
loss_list.append(float(loss))
loss_sum += float(loss)
loss_num += 1
if show_bar:
loss_avg = loss_sum / loss_num
train_postfix_info.update({
'loss': f'{loss_avg:.5f}'
})
train_data_iterator.set_postfix(train_postfix_info)
global_step += 1
if global_step % args.logging_steps == 0:
time_diff = time.time() - tic_train
loss_avg = loss_sum / loss_num
if show_bar:
with logging_redirect_tqdm([logger.logger]):
logger.info(
"global step %d, epoch: %d, loss: %.5f, speed: %.2f step/s"
% (global_step, epoch, loss_avg,
args.logging_steps / time_diff))
else:
logger.info(
"global step %d, epoch: %d, loss: %.5f, speed: %.2f step/s"
% (global_step, epoch, loss_avg,
args.logging_steps / time_diff))
tic_train = time.time()
if global_step % args.valid_steps == 0:
save_dir = os.path.join(
args.save_dir, "model_%d" % global_step)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
model_to_save = model
model_to_save.save_pretrained(save_dir)
tokenizer.save_pretrained(save_dir)
if args.max_model_num:
model_to_delete = global_step-args.max_model_num*args.valid_steps
model_to_delete_path = os.path.join(
args.save_dir, "model_%d" % model_to_delete)
if model_to_delete > 0 and os.path.exists(model_to_delete_path):
shutil.rmtree(model_to_delete_path)
dev_loss_avg, precision, recall, f1 = evaluate(
model, metric, data_loader=dev_data_loader, device=args.device, loss_fn=criterion)
if show_bar:
train_postfix_info.update({
'F1': f'{f1:.3f}',
'dev loss': f'{dev_loss_avg:.5f}'
})
train_data_iterator.set_postfix(train_postfix_info)
with logging_redirect_tqdm([logger.logger]):
logger.info("Evaluation precision: %.5f, recall: %.5f, F1: %.5f, dev loss: %.5f"
% (precision, recall, f1, dev_loss_avg))
else:
logger.info("Evaluation precision: %.5f, recall: %.5f, F1: %.5f, dev loss: %.5f"
% (precision, recall, f1, dev_loss_avg))
# Save model which has best F1
if f1 > best_f1:
if show_bar:
with logging_redirect_tqdm([logger.logger]):
logger.info(
f"best F1 performence has been updated: {best_f1:.5f} --> {f1:.5f}"
)
else:
logger.info(
f"best F1 performence has been updated: {best_f1:.5f} --> {f1:.5f}"
)
best_f1 = f1
save_dir = os.path.join(args.save_dir, "model_best")
model_to_save = model
model_to_save.save_pretrained(save_dir)
tokenizer.save_pretrained(save_dir)
tic_train = time.time()
if args.early_stopping:
dev_loss_avg, precision, recall, f1 = evaluate(
model, metric, data_loader=dev_data_loader, device=args.device, loss_fn=criterion)
if show_bar:
train_postfix_info.update({
'F1': f'{f1:.3f}',
'dev loss': f'{dev_loss_avg:.5f}'
})
train_data_iterator.set_postfix(train_postfix_info)
with logging_redirect_tqdm([logger.logger]):
logger.info("Evaluation precision: %.5f, recall: %.5f, F1: %.5f, dev loss: %.5f"
% (precision, recall, f1, dev_loss_avg))
else:
logger.info("Evaluation precision: %.5f, recall: %.5f, F1: %.5f, dev loss: %.5f"
% (precision, recall, f1, dev_loss_avg))
# Early Stopping
early_stopping(dev_loss_avg, model)
if early_stopping.early_stop:
if show_bar:
with logging_redirect_tqdm([logger.logger]):
logger.info("Early stopping")
else:
logger.info("Early stopping")
tokenizer.save_pretrained(early_stopping_save_dir)
sys.exit(0)
if __name__ == "__main__":
# yapf: disable
parser = argparse.ArgumentParser()
parser.add_argument("-b", "--batch_size", default=16, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--learning_rate", default=1e-5,
type=float, help="The initial learning rate for Adam.")
parser.add_argument("-t", "--train_path", default=None, required=True,
type=str, help="The path of train set.")
parser.add_argument("-d", "--dev_path", default=None, required=True,
type=str, help="The path of dev set.")
parser.add_argument("-s", "--save_dir", default='./checkpoint', type=str,
help="The output directory where the model checkpoints will be written.")
parser.add_argument("--max_seq_len", default=512, type=int, help="The maximum input sequence length. "
"Sequences longer than this will be split automatically.")
parser.add_argument("--num_epochs", default=100, type=int,
help="Total number of training epochs to perform.")
parser.add_argument("--seed", default=1000, type=int,
help="Random seed for initialization")
parser.add_argument("--logging_steps", default=10,
type=int, help="The interval steps to logging.")
parser.add_argument("--valid_steps", default=100, type=int,
help="The interval steps to evaluate model performance.")
parser.add_argument("-D", '--device', choices=['cpu', 'gpu'], default="gpu",
help="Select which device to train model, defaults to gpu.")
parser.add_argument("-m", "--model", default="uie_base_pytorch", type=str,
help="Select the pretrained model for few-shot learning.")
parser.add_argument("--max_model_num", default=5, type=int,
help="Max number of saved model. Best model and earlystopping model is not included.")
parser.add_argument("--early_stopping", action='store_true', default=False,
help="Use early stopping while training")
args = parser.parse_args()
# yapf: enable
do_train()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。