代码拉取完成,页面将自动刷新
# Copyright (c) 2022 Heiheiyoyo. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from itertools import chain
from typing import List, Union
import shutil
from pathlib import Path
import numpy as np
import torch
from transformers import (BertTokenizer, PreTrainedModel,
PreTrainedTokenizerBase)
from model import UIE
from utils import logger
def validate_onnx(tokenizer: PreTrainedTokenizerBase, pt_model: PreTrainedModel, onnx_path: Union[Path, str], strict: bool = True, atol: float = 1e-05):
# 验证模型
from onnxruntime import InferenceSession, SessionOptions
from transformers import AutoTokenizer
logger.info("Validating ONNX model...")
if strict:
ref_inputs = tokenizer('装备', "印媒所称的“印度第一艘国产航母”—“维克兰特”号",
add_special_tokens=True,
truncation=True,
max_length=512,
return_tensors="pt")
else:
batch_size = 2
seq_length = 6
dummy_input = [" ".join([tokenizer.unk_token])
* seq_length] * batch_size
ref_inputs = dict(tokenizer(dummy_input, return_tensors="pt"))
# ref_inputs =
ref_outputs = pt_model(**ref_inputs)
ref_outputs_dict = {}
# We flatten potential collection of outputs (i.e. past_keys) to a flat structure
for name, value in ref_outputs.items():
# Overwriting the output name as "present" since it is the name used for the ONNX outputs
# ("past_key_values" being taken for the ONNX inputs)
if name == "past_key_values":
name = "present"
ref_outputs_dict[name] = value
# Create ONNX Runtime session
options = SessionOptions()
session = InferenceSession(str(onnx_path), options, providers=[
"CPUExecutionProvider"])
# We flatten potential collection of inputs (i.e. past_keys)
onnx_inputs = {}
for name, value in ref_inputs.items():
onnx_inputs[name] = value.numpy()
onnx_named_outputs = ['start_prob', 'end_prob']
# Compute outputs from the ONNX model
onnx_outputs = session.run(onnx_named_outputs, onnx_inputs)
# Check we have a subset of the keys into onnx_outputs against ref_outputs
ref_outputs_set, onnx_outputs_set = set(
ref_outputs_dict.keys()), set(onnx_named_outputs)
if not onnx_outputs_set.issubset(ref_outputs_set):
logger.info(
f"\t-[x] ONNX model output names {onnx_outputs_set} do not match reference model {ref_outputs_set}"
)
raise ValueError(
"Outputs doesn't match between reference model and ONNX exported model: "
f"{onnx_outputs_set.difference(ref_outputs_set)}"
)
else:
logger.info(
f"\t-[✓] ONNX model output names match reference model ({onnx_outputs_set})")
# Check the shape and values match
for name, ort_value in zip(onnx_named_outputs, onnx_outputs):
ref_value = ref_outputs_dict[name].detach().numpy()
logger.info(f'\t- Validating ONNX Model output "{name}":')
# Shape
if not ort_value.shape == ref_value.shape:
logger.info(
f"\t\t-[x] shape {ort_value.shape} doesn't match {ref_value.shape}")
raise ValueError(
"Outputs shape doesn't match between reference model and ONNX exported model: "
f"Got {ref_value.shape} (reference) and {ort_value.shape} (ONNX)"
)
else:
logger.info(
f"\t\t-[✓] {ort_value.shape} matches {ref_value.shape}")
# Values
if not np.allclose(ref_value, ort_value, atol=atol):
logger.info(f"\t\t-[x] values not close enough (atol: {atol})")
raise ValueError(
"Outputs values doesn't match between reference model and ONNX exported model: "
f"Got max absolute difference of: {np.amax(np.abs(ref_value - ort_value))}"
)
else:
logger.info(f"\t\t-[✓] all values close (atol: {atol})")
def export_onnx(output_path: Union[Path, str], tokenizer: PreTrainedTokenizerBase, model: PreTrainedModel, device: torch.device, input_names: List[str], output_names: List[str]):
with torch.no_grad():
model = model.to(device)
model.eval()
model.config.return_dict = True
model.config.use_cache = False
output_path = Path(output_path)
# Create folder
if not output_path.exists():
output_path.mkdir(parents=True)
save_path = output_path / "inference.onnx"
dynamic_axes = {name: {0: 'batch', 1: 'sequence'}
for name in chain(input_names, output_names)}
# Generate dummy input
batch_size = 2
seq_length = 6
dummy_input = [" ".join([tokenizer.unk_token])
* seq_length] * batch_size
inputs = dict(tokenizer(dummy_input, return_tensors="pt"))
if save_path.exists():
logger.warning(f'Overwrite model {save_path.as_posix()}')
save_path.unlink()
torch.onnx.export(model,
(inputs,),
save_path,
input_names=input_names,
output_names=output_names,
dynamic_axes=dynamic_axes,
do_constant_folding=True,
opset_version=11
)
if not os.path.exists(save_path):
logger.error(f'Export Failed!')
return save_path
def main():
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--model_path", type=Path, required=True,
default='./checkpoint/model_best', help="The path to model parameters to be loaded.")
parser.add_argument("-o", "--output_path", type=Path, default=None,
help="The path of model parameter in static graph to be saved.")
args = parser.parse_args()
if args.output_path is None:
args.output_path = args.model_path
tokenizer = BertTokenizer.from_pretrained(args.model_path)
model = UIE.from_pretrained(args.model_path)
device = torch.device('cpu')
input_names = [
'input_ids',
'token_type_ids',
'attention_mask',
]
output_names = [
'start_prob',
'end_prob'
]
logger.info("Export Tokenizer Config...")
export_tokenizer(args)
logger.info("Export ONNX Model...")
save_path = export_onnx(
args.output_path, tokenizer, model, device, input_names, output_names)
validate_onnx(tokenizer, model, save_path)
logger.info(f"All good, model saved at: {save_path.as_posix()}")
def export_tokenizer(args):
for tokenizer_fine in ['tokenizer_config.json', 'special_tokens_map.json', 'vocab.txt']:
file_from = args.model_path / tokenizer_fine
file_to = args.output_path/tokenizer_fine
if file_from.resolve() == file_to.resolve():
continue
shutil.copyfile(file_from, file_to)
if __name__ == "__main__":
main()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。